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SUBSURFACE CHARACTERIZATION USING ARTIFICIAL

NEURAL NETWORK AND GIS

By Subhrendu Gangopadhyay,1 Tirtha Raj Gautam,2 and Ashim Das Gupta3

ABSTRACT: A method for characterizing the subsurface is developed using an artificial neural network (ANN)
and geographic information system (GIS). Data on the distribution of aquifer materials from monitoring well
lithologic logs are used to train a multilayer perceptron using the back-propagation algorithm. The trained ANN
predicts using an appropriate prediction scale, the subsurface formation materials at each point on a discretized
grid of the model area. GIS is then used to develop subsurface profiles from the data generated using the ANN.
These subsurface profiles are then compared with available geological sections to check the accuracy of the
ANN-GIS generated profiles. This methodology is applied to determine the aquifer extent and calculate aquifer
parameters for input to ground-water models for the multiaquifer system underlying the city of Bangkok, Thai-
land. A selected portion of the model domain is used for illustration. The integrated approach of ANN and GIS
is shown to be a powerful tool for characterizing complex aquifer geometry, and for calculating aquifer param-
eters for ground-water flow modeling.

INTRODUCTION

Distributed parameter ground-water models require exten-
sive information on aquifer parameters to carry out model sim-
ulation. The conceptualization of an aquifer system is based
on the amount of information available for the system under
consideration. The primary source of information describing
the geological formation of the aquifer system is lithological
logs. As drilling of boreholes is a costly process, the ready-
to-access information for the modeler would typically be lith-
ologic logs of monitoring wells, and wells drilled to carry out
aquifer pumping tests. To facilitate model conceptualization
and to estimate aquifer parameters, an integrated tool of an
artificial neural network (ANN) and geographic information
system (GIS), called ANN-GIS, is developed.

As interest in the development and application of physically
based distributed modeling has been increasing, GIS is being
used in data preparation, manipulation, and management (De
Vantier and Feldman 1993; Fedra 1993). Neural networks re-
cently have also found some application in the field of ground-
water hydrology. Aziz and Wong (1992) used neural networks
to determine aquifer parameter values from pumping test data.
Ranjithan et al. (1993) used neural networks as a screening
tool to select critical realizations in Monte Carlo simulations
to study the effect of aquifer parameter uncertainty in the de-
sign of ground-water management strategies. A new approach
to nonlinear ground-water management methodology was de-
veloped by Rogers and Dowla (1994) using artificial neural
networks to optimize aquifer remediation.

An application of a GIS-based procedure for developing
subsurface profiles from a well-log database was developed by
Camp and Brown (1993) using ARC/INFO. A neural kriging
(NK) approach to characterize aquifer properties was devel-
oped by Rizzo and Dougherty (1994). The NK method fol-
lowed the operational objectives of ordinary kriging, and was
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used to develop two-dimensional hydraulic conductivity fields.
The proposed ANN-GIS method is an advanced approach to
characterize the three-dimensional subsurface, and to estimate
hydrogeologic characteristics.

The ANN-GIS tool requires only primary information on
aquifer materials from formation logs to train a multilayer per-
ceptron using the error back-propagation algorithm (Rumelhart
et al. 1986). The artificial neural network is used as an inter-
polating tool to map the subsurface formation. After the net-
work has been trained, the aquifer material at any point within
the trained domain can be ascertained. After assigning material
category values to different aquifer material types, GIS map
layers are developed for a regular model grid. Input data for
a fully three-dimensional ground-water flow model can be pre-
pared using this tool. Depth-averaged aquifer parameters such
as transmissivity, leakage factor, and storage coefficient can be
estimated from the GIS map layers using GIS functions and
map algebra (Shapiro and Westervelt 1992). The ANN-GIS
methodology is applied to determine the subsurface formation
in the Bangkok, Thailand, area, to identify the extent of water
bearing strata (sand layers), and to estimate aquifer parameter
inputs for a quasi-three-dimensional flow model.

GIS

GIS in recent years has emerged to be a powerful tool, with
the integrated capabilities of spatial analysis database manage-
ment and graphic visualization. These integrated capabilities
have enabled scientists and researchers to monitor and analyze
spatial phenomena in greater detail than by conventional anal-
ysis (Burrough 1987). Presently, GIS is extensively used by
practically all scientists and professionals in the fields of plan-
ning and management, involving spatially distributed re-
sources.

In the field of water resources planning and management,
GIS is used either individually or in conjunction with simu-
lation models (Stuebe and Johnston 1990; Hinaman 1993;
Richards et al. 1993; Srinivasan and Arnold 1994). GIS func-
tions (Holdstock 1998) enable one to collate data from diverse
sources into a consistent input form that can be used by sim-
ulation models. The results from the simulation models can
then be processed using GIS functions to provide new levels
of understanding of spatial phenomena.

In the present paper, the GIS geographic resources analysis
support system (GRASS), in conjunction with an ANN model,
has been used to determine the distribution of subsurface ma-
terials and to derive estimates of hydrogeologic properties for
the multiaquifer system underlying the city of Bangkok and
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FIG. 2. ANN-GIS Methodology

FIG. 1. Artificial Neural Network: (a) Description of Unit; (b)
Sigmoidal Activation Function

its adjoining provinces. The salient features of GRASS are
described in the following section.

GEOGRAPHIC RESOURCES ANALYSIS SUPPORT
SYSTEM

The GIS GRASS has been developed by the U.S. Army
Construction Engineering Research Laboratory. GRASS (Geo-
graphical 1993) provides software capabilities suitable for or-
ganizing, portraying, and analyzing digital spatial data.
GRASS is composed of three subsystems (Canter 1996): (1)
grid—for analyzing, overlaying, and modeling grid-cell type
maps (raster maps); (2) imagery—for displaying, georeferenc-
ing, comparing, and classifying satellite and aerial photograph
imagery; and (3) MAP-DEV—for digitizing and integrating
data from sources such as hard-copy maps, digital elevation
models, and other sources into a format suitable for analysis
by the grid module. GRASS is primarily a raster map analysis
and display system; it also has some vector capabilities.

The principal uses of GRASS vector files are to generate
raster maps and to plot base maps on top of raster map dis-
plays. Since GRASS is primarily a raster based GIS, it is suit-
able for studies where analysis needs to be done over grid-
cells, as in the present case. Here, the objective is to predict
subsurface materials over finite-depth intervals using a regular
grid and subsequently estimate hydrogeological properties
over grid-cells using the GRASS, GIS library functions (Ge-
ographical 1993).

DEVELOPMENT OF ANN-GIS

The steps in the ANN-GIS methodology involve (1) iden-
tification of input-output pattern sets to be used for ANN train-
ing; (2) determination of neural network architecture (number
of input nodes, number of hidden layers, number of hidden
nodes, and number of output nodes); and (3) choice of neural
network training parameters (convergence criteria, learning
rate, and momentum factor). The training patterns are used to
develop the multilayer perceptron for a chosen network archi-
tecture using the back-propagation algorithm. Information in
each unit j of the network [Fig. 1(a)] is processed as follows.
All inputs to unit j are integrated using the propagation rule

I = w a (1)j ij iO
i

where Ij = total input to unit j; wij = connection strength
(weight) between units i and j ; and ai = activation of unit i.
The level of activation is updated using the sigmoidal activa-
tion function, 1/[1 1 exp(2Ij)], [(Fig. 1(b)], and is equal to
the output from unit j. The activation is propagated in this
manner to the final output nodes of the network. The network
output is compared with the desired output for a given input-
output set. Presentation of all input-output training pairs to the
network and adjusting the weights (wij) that many times is
referred to as one epoch. Training of the network using the
back-propagation algorithm requires several epochs or itera-
tions. The network is considered trained when the predefined
convergence criteria are satisfied.

The ANN-GIS integrated tool is shown in Fig. 2. After the
ANN is trained, the network is verified using test well for-
mation logs, and the appropriate scale of prediction is ascer-
tained from error analysis. Prediction of the distribution of
subsurface formation materials is then done on a predefined
grid system. Classification of aquifer materials based on a tex-
tural classification system serves as the input for GIS model-
ing. Raster map layers are then generated using GIS GRASS,
showing the distribution of subsurface material types. Using
these raster map layers, and using GIS functions such as clas-
sification and union, estimates of aquifer parameter values are
calculated.

APPLICATION OF ANN-GIS

The development of the ANN architecture and application
of the ANN-GIS tool for the study area shown in Fig. 3 are
described next.

Data Availability, Processing, and ANN Architecture

For the study area shown in Fig. 3, lithologic logs of 60
monitoring wells were available, distributed over the study
area. Of these 60 monitoring well lithologic logs, 50 logs have
been used for the training of the ANN, and 10 logs have been
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FIG. 3. Study Area Showing Location of Training and Verification Wells, and Line of Cross Sections

TABLE 1. Classification of Soil Types

Clay percentage in soil (p)
(1)

Soil type
(2)

p $ 50 Clay
30 # p < 50 Sandy clay
20 # p < 30 Clayey sand
p < 20 Sand

used for its verification. The subsurface formation in the Bang-
kok area primarily consists of an interbedded structure of clay
and sand layers. Information on the distribution of aquifer ma-
terials was coded up to a depth of 200 m. The input infor-
mation to the network is the location of the monitoring wells
(x- y-coordinates) and the depth (z-coordinate) extent of a par-
ticular material type (zfrom and zto). The output information is
the aquifer material present for the input depth zone. The most
important aspect in the coding of input-output pairs is the scal-
ing and normalization of spatial inputs. At the beginning of
this research, a single network that could be trained and used
to predict for the entire depth up to 200 m was attempted.
However, this was unsuccessful in spite of fixing a large num-
ber of iterations (values as high as 105) and significantly re-
laxing the acceptance criterion. To resolve this situation, it was
necessary to train the neural network for different depth clas-
ses. The question now was: How should the depth classes be
defined? For this, sand frequency distribution for the study
area was used.

This concept has been outlined in Premchitt and Das Gupta
(1981). The variation of sand frequency showed that four wa-
ter bearing strata (aquifers) can be identified; for this reason,
a separate network was developed for four depth classes, each
corresponding to a vertical extent of 50–200 m. The normal-
ization factor thus used for depth was 50 m. The spatial co-
ordinates of the monitoring wells were normalized using the
maximum and minimum values of the x- and y-coordinates.
Furthermore, the depth extent between two aquifer material
types was divided into 10 levels. Why? Let us consider any
particular depth class for which an ANN model has to be de-
veloped. At a particular location, it can be that a soil material
may extend for 10 m before another type of material is en-
countered. But at another location, the same soil material may
extend for only 1 m before a change in material type occurs.
Thus, this issue of scaling should be considered in the training

of the network. To resolve this, instead of presenting to the
network that a particular material extends for 10 m, if it is
presented that the material type extends for 1 m over 10 levels,
the network is able to converge. Thus, by dividing into 10
levels, the problem of scaling has been incorporated in the
training of the network, and this smoothing was found to be
essential for the convergence of the network. Thus, the total
number of input nodes found appropriate was 15, inclusive of
one bias input node. The use of bias nodes for thresholding is
typical in the training of a multilayer perceptron using the
back-propagation algorithm (Rich and Knight 1991; Zurada
1992; Smith and Eli 1995).

The aquifer materials were classified into three groups, clay,
sand, and any other material type. The other material type for
this formation was primarily gravel. A binary coding scheme
of 0 or 1 was used to indicate the presence of a particular
material type. For mixed material types such as sandy clay or
clayey sand, the textural classification given in Table 1 pro-
vides a guideline for clay content in each of these soil types.
The physical properties of sandy clay and clayey sand are
close to clay and sand, respectively. Thus, in preparing the
input for these two soil types, they were considered equivalent
to clay or sand. Hence, the input for sandy clay will corre-
spond to 1 for clay and 0 for sand, and vice versa for clayey
sand. For the lithologic log data available to train the network,
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FIG. 4. Architecture of Artificial Neural Network Showing In-
put Layer, Hidden Layer, and Output Layer

TABLE 2. Percentage Error as Function of Vertical Discretiza-
tion for Different Depth Classes Derived from Test Well Logs
Used to Verify Training of Neural Network

Vertical
discretization

(m)
(1)

Percentage Error in Depth Classes

0–50
(m)
(2)

50–100
(m)
(3)

100–150
(m)
(4)

150–200
(m)
(5)

2.50 22.22 33.93 25.00 32.50
5.00 16.67 25.00 20.83 25.00
7.50 5.56 19.64 4.17 12.50

10.00 5.56 12.50 2.08 5.00
12.50 2.78 7.14 0.00 5.00

FIG. 5. Comparison of Verification Well Lithology (Total
Depth, 200 m): (a) ANN Generated; (b) Field

exact percentages of sand and clay content in these soil types
were not available.

The number of hidden layers used was one, and the number
of hidden nodes sufficient for the training and convergence of
the network was found, though trial and error, to be six, in-
clusive of one bias node. The architecture of the ANN model
is shown in Fig. 4. The network architecture was thus fixed to
be 15-6-3 (input nodes-hidden nodes-output notes).

Training and Verification of ANN

The ANN was trained for the four depth classes, namely,
0–50 m, 50–100 m, 100–150 m, and 150–200 m. The error
convergence criteria (Zurada 1992) were set equal to 0.1, and
a constant learning rate of 0.9 was used for training of the
network. The number of iterations needed for convergence was
between 1,000 and 3,000 for each of these four cases. Table
2 shows the error distribution for different values of depth

intervals of the verification wells (Fig. 3) used to test the ANN
prediction accuracy. For any particular depth class, percentage
error was calculated as the ratio of the number of predicted
points that did not match with the observed material type at
that point, for the specified vertical discretization, to the total
number of points for which the prediction was made.

A depth interval of 10 m is considered optimum from the
point of view of discretization of input data used for training,
as well as from a practical hydrogeological point of view. A
representative ANN generated well log [Fig. 5(a)] is compared
with the same well log derived from field data [Fig. 5(b)]. It
is seen that the trained ANN could adequately predict the ver-
ification well log. Good correspondence was also obtained for
other verification wells. In general, the error in predicting the
lithologies of the verification wells (total of 10) was with the
prediction of very thin clay/sand lenses. Intuitively, such dis-
crepancies can be corrected if the resolution of the input data
can be further improved. This can be done by using a finer
discretization (levels) of the subsurface material between zfrom

and zto to train the ANN (in this case, 10 levels were used).

Prediction Using ANN and ANN-GIS Cross Sections

Using a depth interval of 10 m and respective weights for
a particular depth class, prediction of the distribution of aquifer
materials was made. Four categories of subsurface formation
materials, clay, sandy clay, clayey sand, and sand, were clas-
sified based on the textural classification of Table 1. These
materials were categorized from 1 to 4 for clay, sandy clay,
clayey sand, and sand parts, respectively. This input was im-
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FIG. 6. ANN-GIS Generated East-West Geologic Profile

FIG. 7. ANN-GIS Generated North-South Geologic Profile

FIG. 8. Field North-South Geologic Profile in Study Area

ported to generate subsurface profiles and study both the hor-
izontal and vertical extent of the distribution of subsurface
materials. Vertical cross sections were drawn for both east-
west (EW) and north-south (NS) directions (Fig. 3) as GRASS
raster map layers, shown in Figs. 6 and 7, respectively. The
available north-south geologic section drawn from lithologic
logs (‘‘Records’’ 1992) is shown in Fig. 8.

Comparison of Field and ANN-GIS NS Cross Section

To compare the field NS cross section with the ANN-GIS
generated profile, the field cross section was first rasterized
into 51 3 20 (total of 1,020) cells, equal to the ANN-GIS NS
profile. In the rasterized field NS cross section, clay is present
in 429 cells, and sand is present in 591 cells. The same cross
section generated using ANN-GIS has clay and sand present
in 523 and 497 cells, respectively. Thus, the generated cross
section overestimates the clay content by 94 cells and hence
underestimates the sand content by the same number of cells.
Thus, the error in material mass balance is only about 9%. The
exact correspondence between the two cross sections occurs
in 574 cells (253 clay cells and 321 sand cells) out of the total

1,020 cells. Thus, about 56% of the generated cross section
has the same spatial distribution of subsurface material as in
the field cross section.

In the depth-averaged sense, the material mass balance is
more important. For example, in the first 50 m we have five
cells of 10 m each at a given location. Now the distribution
of sand and clay in these five cells may be random. But what
is important to know is what fraction of the averaging depth
consists of sand, and what fraction consists of clay. This in-
formation will determine the parameter estimates as given in
(3). The interesting question is: If this NS ANN-GIS generated
cross section is used to estimate depth-averaged hydraulic
properties [(3)], then what is the level of accuracy? The data
for this analysis consist of 204 blocks (four rows, each rep-
resenting a depth of 50 m, and 51 columns; one block consists
of five cells, each 10 m thick).

Within a particular averaging depth, the difference between
the total number of clay cells (or sand cells) in the ANN-GIS
generated cross section and the field cross section can be cal-
culated. This difference is the error in calculating cumulative
thickness for the soil material at that location. No error implies
that within the block of five cells, the total number of clay
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FIG. 9. ANN-GIS Generated Horizontal Profile at Depth of 160–170 m

TABLE 3. Error in Estimating Depth-Averaged Hydraulic Char-
acteristics Using ANN-GIS NS Cross Section

Depth
class
(m)
(1)

Number of Cells in Given Error (Difference in Total
Clay/Sand Content between Field and ANN-GIS NS

Cross Section) Class

0%
(2)

20%
(3)

40%
(4)

60%
(5)

80%
(6)

0–50 11 30 10 — —
50–100 4 16 31 — —
100–150 15 18 10 4 4
150–200 8 34 9 — —
[Sum] 38 98 60 4 4
[Total blocks] — — 204 — —
[Error] 19% 48% 29% 2% 2%

and sand cells are equal in both of the cross sections. An error
of 20% corresponds to an underestimation/overestimation of
clay/sand within the block by one cell. Similarly, errors of
40%, 60%, and 80% imply a difference of two, three, and four
cells, respectively, within the block. The result is given in Ta-
ble 3. It is seen that in about 70% of this cross section, depth-
averaged hydraulic properties can be calculated with an error
within 20%. In 96% of the cross section, the error is within
40%. From the considerations of material mass balance and
the error in calculating depth-averaged hydraulic characteris-

tics, it can be concluded that the ANN-GIS model could ad-
equately predict the field NS cross section.

ANN-GIS Horizontal Sections

The ANN is then also used to predict the distribution of
subsurface materials for a horizontal grid system. After clas-
sification, the information is similarly transformed into
GRASS raster map layers. Such horizontal sections were de-
veloped at 10 m intervals up to a depth of 200 m. A repre-
sentative horizontal section showing the distribution of sub-
surface materials for the depth zone of 160–170 m is shown
in Fig. 9. These horizontal sections formed the basis of esti-
mation of depth-averaged aquifer parameters, such as trans-
missivity, leakage factor, and storage coefficient, for input to
the ground-water flow model.

ESTIMATION OF AQUIFER PARAMETERS USING
GRASS

The interpretation of vertical and horizontal sections shows
that the water-bearing strata of sand layers (aquifers) and low-
permeability clay layers (aquitards) are not separated into dis-
tinct continuous layers, as assumed in the conventional way.
It is found that these strata are complex and distributed in a
random manner over the area. Many clay layers at some depths
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FIG. 10. Distribution of Transmissivity over Study Area for Model Depth of 130–180 m in m2/d

TABLE 4. Properties of Subsurface Formation Materials in
Bangkok Area

Soil type
(1)

Hydraulic conductivity
K (m/d)

(2)

Specific storage
Ss (m21)

(3)

Clay 5 3 1025 2.0 3 1024

Sandy clay 5 3 1024 5.0 3 1025

Clayey sand 50 5.0 3 1026

Sand 63 2.5 3 1026

are missing in various areas, while the thickness of the clay
and sand varies greatly from location to location. It confirms
the findings by Premchitt and Das Gupta (1981) and Piyasena
(1982).

For the computation of aquifer parameters, the aquifer sys-
tem is considered to be a single hydraulically connected body.
The calculation was made using GRASS library functions for
three conceptual model layers (‘‘Simulation’’ 1992) schema-
tized for the computational convenience of the ground-water
model. The equivalent depth-averaged hydraulic parameters,
namely, transmissivity, leakage factor, and storage coefficient,
are calculated as follows.

Transmissivity and leakage factor are computed from equiv-
alent horizontal and vertical hydraulic conductivity, respec-
tively. The equivalent hydraulic conductivity in the horizontal
and vertical directions is given by

K b bi i iO O
K = ; K = (2)H V

bibiO O Ki

where KH = equivalent horizontal hydraulic conductivity; KV

= equivalent vertical hydraulic conductivity; Ki = hydraulic
conductivity of soil layer i; and bi = thickness of soil layer i.

The parameters’ transmissivity (T), leakage factor (W ), and
storage coefficient (S ), for any model layer, are given by

K 1VT = K b = K b ; W = = ; S = S b (3)H i i i i iO O ObibiO O Ki

where Si = specific storage of soil layer i.
The subsurface formation in the study area was divided into

three model layers of 51 3 51 grid cells each. The depth
ranges of these layers were 20–80 m, 80–130 m, and 130–
180 m, representing the Bangkok, Phra Pradaeng, and Nakhon
Luang aquifers, respectively. Computation of transmissivity,
leakage factor, and storage coefficient was done using GRASS
functions. The output of the neural network gave the type of
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subsurface formation in ASCII data in a 51 3 51 matrix form
for each layer of 10 m thickness, starting from the ground to
200 m below the surface. Each cell size was 1.384 km by
1.534 km in the EW and NS direction, respectively. Thus, the
first model layer contained 51 3 51 3 6 cells, and the second
and third model layers contained 51 3 51 3 5 cells. ASCII
output of the neural network was imported to GRASS binary
files by using the r.in.ascii function of GRASS. The support
files for topology were built using r.support.

The transmissivity value of each model grid of a model
layer was calculated by using r.weight. The function r.weight
required weight to be assigned to each type of subsurface for-
mation. The assigned weights for transmissivity calculation
were the product of the thickness and hydraulic conductivity
of the respective material (Table 4). Being discretized in a
regular thickness, the transmissivity calculation was simplified
as the sum of the product of the hydraulic conductivity and
layer thickness of each layer in a cell [(3)]. The leakage factor
value of each model grid of a model layer was estimated using
the r.weight and r.mapcalc functions of GRASS. The sum of
the ratios of layer thickness to hydraulic conductivity of each
cell present in a model grid was obtained by assigning the
ratio as the weight for a particular cell. The ratio was evaluated
on the basis of the type of formation of a particular cell. The
leakage factor was calculated by taking the reciprocal of the
sum by using the r.mapcalc function of Grass. The storage
coefficient of each model layer grid was calculated in a similar
fashion to the estimation of transmissivity. The product of the
cell thickness and the respective specific storage of subsurface
formation materials (Table 4) was assigned as the weight, and
sum of this weight was computed by r.weight as the storage
coefficient of each model grid [(3)].

The estimated values of transmissivity, leakage factor, and
storage coefficient were classified into four classes, with
ranges of values conforming to low, medium, high, and very
high groups, using the function r.reclass. The reclassified maps
were then converted into raster layers using r.mapcalc. The
transmissivity distribution map for the layer of 130–180 m is
shown in Fig. 10. Similar maps can be generated, showing the
distribution of the leakage factor and storage coefficient.

Using the transmissivity distribution map (Fig. 10), areas of
low (500 m2/d) to high (3,150 m2/d) transmissivity values can
be identified. The practical significance is that areas of well
field development can be ascertained. Also, the map can be
used to input transmissivity values to a ground-water flow
model (for example, MODFLOW; McDonald and Harbaugh
1988). GRASS provides the library function r.out.ascii to ex-
tract ASCII data from its raster maps. For example, in this
case, using the function r.out.ascii on the map shown in Fig.
10, transmissivity data for the model layer of 130–180 m can
be obtained for the 51 3 51 grid cells (dimensions: EW, 1.384
km; NS, 1.534 km). Similarly, leakage factor and storage co-
efficient values can also be extracted. Thus, input for all of
the layers of the model can be prepared, and flow simulations
can be carried out.

SUMMARY AND CONCLUSIONS

An integrated ANN-GIS tool has been developed for the
generation of subsurface profiles, and for the identification of
the distribution of subsurface materials. GIS is a powerful tool
used to display the extent of subsurface formation and to iden-
tify potential zones for well field development. The training
of the neural network is done with the lithology of monitoring
wells. Verification of the accuracy of the trained network
should be done using test well lithologic logs, to identify the
appropriate prediction vertical depth interval. This is the most
important step to ensure accurate prediction of formation ma-
terials, subsequent textural classification, and GIS modeling.

As this method is developed following three-dimensional spa-
tial coordinates, it can be used to estimate hydraulic param-
eters for a fully three-dimensional ground-water model. The
ANN-GIS methodology is applied to ascertain the subsurface
formation in the Bangkok area. Depth-averaged hydraulic pa-
rameters are estimated for input to a regional ground-water
flow model.
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