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ABSTRACT

An effort is under way aimed at historical analysis and monitoring of the pan-Arctic terrestrial drainage system.
A key element is the provision of gridded precipitation time series that can be readily updated. This has proven
to be a daunting task. Except for a few areas, the station network is sparse, with large measurement biases due
to poor catch efficiency of solid precipitation. The variety of gauges used by different countries along with
different reporting practices introduces further uncertainty. Since about 1990, there has been serious degradation
of the monitoring network due to station closure and a trend toward automation in Canada.

Station data are used to compile monthly gridded time series for the 30-yr period 1960—89 at a cell resolution
of 175 km. The station network is generally sufficient to estimate the mean and standard deviation of precipitation
at this scale (hence the statistical distributions). However, as the interpolation procedures must typically draw
from stations well outside of the grid box bounds, grid box time series are poorly represented. Accurately
capturing time series requires typically four stations per 175-km cell, but only 38% of cells contain even a single
station.

Precipitation updates at about a 1-month time lag can be obtained by using the observed precipitation dis-
tributions to rescale precipitation forecasts from the NCEP-1 reanalysis via a nonparametric probability transform.
While recognizing inaccuracies in the observed time series, cross-validated correlation analyses indicate that
the rescaled NCEP-1 forecasts have considerable skill in some parts of the Arctic drainage, but perform poorly
over large regions. Treating climatology as a first guess with replacement by rescaled NCEP-1 values in areas
of demonstrated skill yields a marginally useful monitoring product on the scale of large watersheds. Further
improvements are realized by assimilating data from a limited array of station updates via a simple replacement
strategy, and by including aerological estimates of precipitation less evapotranspiration (P — ET) within the
initial rescaling procedure. Doing a better job requires better observations and an improved atmospheric model.
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The new ERA-40 reanalysis may fill the latter need.

1. Introduction

The hydroclimatology of the Arctic terrestrial drain-
age plays an important role in the climate system. The
primary freshwater source to the Arctic Ocean is river
discharge (Aagaard and Carmack 1989), the bulk con-
tributed by the Ob, Yenisey, Lena, and Mackenzie. River
discharge influences ocean salinity and sea ice condi-
tions (McDonald et al. 1999; Steele and Boyd 1998),
which can impact freshwater fluxes traveling through
the Fram Strait and Greenland Sea into the North At-
lantic. The degree of surface freshening in the North
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Atlantic is thought to influence the global thermohaline
circulation (Broecker 1997). Changes in the terrestrial
hydrologic cycle may alter soil moisture, impacting
plant communities. Arctic soils serve as potentially sig-
nificant sources of carbon dioxide and methane. Fluxes
appear to respond sensitively to altered soil moisture
and temperature (Oechel et al. 1993).

Studies from numerous disciplines document signif-
icant change in the northern high-latitude environment
(Serreze et al. 2000; Moritz et al. 2002). Pronounced
winter and spring warming over Eurasia and northwest
North America since about 1970 is partly compensated
by cooling over eastern Canada and the northern North
Atlantic. This has been attended by shifts in the at-
mospheric circulation characterized by dominance of the
positive mode of the Arctic Oscillation—North Atlantic
Oscillation (Thompson and Wallace 1998, 2000). Cli-
mate proxies (e.g., tree rings and varves), which are
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primarily indicators of summer temperature, point to the
twentieth-century Arctic as the warmest of the past 400
years. Negative snow cover anomalies have dominated
the North American and Eurasian continents since the
late 1980s and terrestrial precipitation has exhibited a
general increase since 1900. Small Arctic glaciers have
experienced generally negative mass balances. There is
also evidence of increased plant growth and a longer
growing season. Winter discharge from the major Si-
berian rivers appears to have increased (Serreze et al.
2003). Oceanic trends include a general downward ten-
dency in sea ice extent and increased inflow of warm
Atlantic-derived waters into the Arctic Ocean (Cavalieri
et al. 1997; Dickson et al. 2000).

These recent changes point to the need to monitor the
Arctic system and better understand interactions be-
tween system components. The terrestrial hydrologic
budget is a high priority. Important tasks include as-
sembling multidecade time series of budget components
[e.g., precipitation (P), evapotranspiration (ET), P —
ET, snow water equivalent, runoff] and related variables
(temperature, permafrost active layer depth). A key el-
ement of monitoring is to provide time series updates
and take advantage of new data streams, such as pro-
vided by National Aeronautics and Space Administra-
tion (NASA) Earth Observation System platforms.

There has been progress in achieving these goals. The
University of New Hampshire (UNH) has released R-
ArcticNET, an archive of historic monthly river dis-
charge for the pan-Arctic drainage (Lammers et al.
2001). UNH is acquiring daily discharge updates for
many rivers in Russia and Canada at time lags as short
as several days. The National Centers for Environmental
Prediction—National Center for Atmospheric Research
(NCEP-NCAR, hereafter referred to as NCEP) reanal-
ysis system (Kalnay et al. 1996; Kistler et al. 2001) has
emerged as a critical research tool. Reanalysis provides
a modern picture of the atmospheric hydrologic budget
through assessments of P — ET, calculated from wind
and humidity profiles (Bromwich et al. 2000; Cullather
et al. 2000; Rogers et al. 2001; Serreze et al. 2003).
Efforts have been made to assemble quality precipitation
datasets for the former Soviet Union (FSU) (Groisman
et al. 1991) and for Canada (Groisman 1998; Mekis and
Hogg 1999). Satellites are providing systematic cov-
erage of snow extent, and efforts are on going to validate
retrievals of snow water equivalent from passive mi-
crowave brightness temperatures (Tait 1998). Zhang et
al. (1999) and Running et al. (1999) report on techniques
to assess near-surface soil freeze—thaw status using pas-
sive microwave and scatterometer data.

A project known as Arctic-RIMS (Rapid Integrated
Monitoring System) is bringing datasets and techniques
together to provide readily accessible hydrologic prod-
ucts. Arctic-RIMS is a collaborative effort between Uni-
versity of Colorado, University of New Hampshire, The
Ohio State University, and the NASA Jet Propulsion
Laboratory. The project uses satellite data, the NCEP
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FiG. 1. The Arctic terrestrial drainage (all shaded areas) and its
four major watersheds (the Ob, Yenisey, Lena, and Mackenzie). Also
indicated are the locations of four well-instrumented sites used in
Monte Carlo simulations.

reanalysis, in situ records (including observed dis-
charge), and a permafrost/water balance model to com-
pile fields of P, P — ET, ET, temperature, soil moisture,
soil freeze—thaw state, active layer thickness, snow ex-
tent, and its water equivalent, soil water storage, and
other variables. Historical time series are provided along
with updates at a 1-2-month time lag. Gridded products
are assembled over the complete Arctic terrestrial drain-
age (Fig. 1), defined as areas emptying into the Arctic
Ocean as well as into Hudson Bay, James Bay, Hudson
Strait, the Bering Strait, and northern Bering Sea.

The present paper discusses a core element of Arctic-
RIMS—the provision of historic time series and updates
of gridded monthly precipitation. This has proven to be
a difficult task. The required station density to assemble
quality historic time series at a spatial scale useful for
input to hydrologic models exceeds what is available
over most of the Arctic drainage. The problem is com-
pounded by large errors in the measurement of solid
precipitation and degradation of the station network
since about 1990, the latter due to budget cuts in both
the FSU and Canada. For example, the station coverage
for the FSU in 1996 is about half of that available in
the mid 1980s. Canada is also seeing a trend toward the
replacement of manual observations by automated sys-
tems, providing data of suspect quality. Given this deg-
radation, monitoring must rely more heavily on alter-
native data sources. We describe a monitoring approach
that blends precipitation observations with output from
the NCEP reanalysis. We show how statistical distri-
butions of gridded station precipitation can be used to
rescale monthly NCEP precipitation forecasts to remove
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systematic biases, and how these reconstructions can be

further improved with assimilation of available station
updates and aerological estimates of P — ET. The overall
performance of the approach, however, is limited by the
need for both better historic time series and a better
atmospheric model.

2. Station precipitation datasets
a. Primary archives

A readily available source of monthly station precip-
itation data for the pan-Arctic drainage is the Global
Historical Climatological Network (GHCN) (Vose et al.
1992). There are several regional datasets. Groisman et
al. (1991) assembled monthly time series for 622 sta-
tions in the FSU. Data are available through the early
1990s for most stations and through the late 1990s for
a subset. The National Climatic Data Center holds da-
taset TD-9816 ‘‘Canadian Monthly Precipitation”
(Groisman 1998). It contains nearly 7000 stations, al-
though the vast majority are in the southern part of the
nation. Mekis and Hogg (1999) describe a separate Ca-
nadian dataset of 495 stations.

As far as we are aware, the GHCN data contain no
bias adjustments. As discussed shortly, bias adjustments
are intended to account for gauge undercatch of pre-
cipitation and other measurement problems. The FSU
dataset and TD-9816 are available as raw and adjusted
monthly values. The Mekis and Hogg (1999) Canadian
dataset provided to us contains adjustments. The Arctic
Precipitation Data Archive in Offenbach, Germany,
maintains station data from a number of different sourc-
es, and in both adjusted and raw form. Through Arctic-
RIMS, we also obtained data for 105 stations (raw
monthly totals) within the Ob, Yenisey, and Lena basins
for the period 1966-90. These stations are not present
in Groisman et al’s FSU archive.

Efforts were made to assemble the most complete
pan-Arctic dataset possible. We use the Groisman et al.
FSU archive, TD-9816, and the additional 105 records
just described. For Alaska, Scandinavia, Greenland, and
areas in Europe not covered by regional sources, use is
made of the GHCN archive. As justified below, only
the raw data were used. Monthly values available from
one archive were sometimes missing in another. Records
were merged as necessary to obtain more complete time
series. We use the regional datasets as they are presum-
ably subjected to a higher level of quality control than
possible for the global (GHCN) database.

The station records were assembled over the period
1960—89. There are two reasons for choosing this 30-
yr period. First, as just mentioned, station data are much
less abundant for later years, with Canada seeing a trend
toward automation. Second, NCEP reanalysis output
(which represents a basis of the monitoring strategy),
is less reliable prior to 1960 due to the sparse assimi-
lation database (see section 3). Hence, 1960—89 rep-
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Station Locations

Fic. 2. Distribution of precipitation stations that are inside of or
within 250 km of the boundaries of the Arctic terrestrial drainage
having at least 10 yr of record length over the period 1960-89.

resents the 30-yr period for which reasonably complete
time series of station precipitation are available along
with “reliable” NCEP records. Figure 2 shows the lo-
cation of stations with at least 10-yr of data over the
period 1960-89 that are inside or lie within 250 km of
the boundaries of the Arctic drainage.

b. Measurement problems and bias adjustments

The problem of biases in high-latitude precipitation
data has long been recognized. However, what consti-
tutes the most appropriate adjustment procedures is a
lively area of debate and it will be some time before
we have a “community dataset” representing a best-
faith effort to deal with the problem. The primary issue
is gauge undercatch of solid precipitation. This was ex-
amined through the World Meteorological Organization
Solid Precipitation Intercomparison Project (Goodison
et al. 1998; Yang et al. 2001). In summary, different
countries use different gauge and wind shield combi-
nations, which introduce variations in catch efficiency,
especially for high wind speeds. Errors can reach 50%—
100% in cold, windy environments. This has created
artificial discontinuities in cold-region precipitation
within countries and across international borders. Ad-
ditional issues are wetting losses (the portion of pre-
cipitation that sticks to the walls of the gauge after it
is emptied), evaporation losses, and treatment of trace
precipitation amounts. The latter can be important as
precipitation totals across much of the Arctic and sub-
arctic are very low, especially in winter.

Bias adjustments in most archives (e.g., Legates and
Willmott 1990; Groisman et al. 1991; Groisman 1998)
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are climatological in representing constant multipliers
to raw monthly precipitation totals. There have also been
efforts to perform adjustments for individual days or
months (Mekis and Hogg 1999; Yang 1999). Adjust-
ments are site specific and require information on gauge
type and changes through time, winds, site conditions,
and measurement practices.

To illustrate a few of the problems, during the 1940s
and 1950s, the FSU changed from use of Nipher-shield-
ed gauges to improved Tretiyakov gauges. From parallel
measurements, Groisman et al. (1991) adopted a cor-
rection to adjust precipitation measured with the Nipher
gauge to be comparable with the Tretiyakov values. A
wetting loss adjustment was also adopted. The wind
corrections are a function of climatological wind speed,
temperature, snowfall, and precipitation intensity at the
gauge site. Techniques applied to the FSU data are in-
appropriate for Canada not just because of different
gauges, but differences in the reporting of precipitation.
The Canadian practice at most manually operated sites
is to measure rainfall and snowfall separately. Rainfall
is measured at gauges. A ruler is used to measure the
depth of freshly fallen snow, which is converted into
water equivalent using a 10:1 ratio. Starting in the early
1960s, some stations were equipped with Nipher-shieid-
ed elevated snow gauges that directly measure the water
equivalent of snow.

Groisman (1998) adjusted the Canadian data by com-
puting climatological ratios between the water equiva-
lent measured at Nipher gauges (adjusted to account for
undercatch) and from the manual ruler measurements.
Ratios interpolated to the station locations were mul-
tiplied by the water equivalent at the stations as deter-
mined by the 10:1 ruler conversions. Before 1975, a
wetting loss adjustment was performed, but information
on the number of measurements per day that would
allow for systematic corrections is not available at all
stations. Wetting corrections were hence based on the
mean number of days per month with rainfall or (if not
available) a value interpolated from nearby stations. A
small adjustment of rainfall was also included for es-
timated wind undercatch. After 1975 an improved “‘type
B” gauge began to be used (Metcalfe et al. 1997) and
a wetting correction was considered unnecessary. There
are no corrections for trace rainfall events. Mekis and
Hogg (1999) apply broadly similar techniques to adjust
the snowfall measurements and rain undercatch, but also
include corrections for evaporation and trace precipi-
tation amounts. Bias adjustment of data from automated
systems is only beginning to be addressed.

We are reluctant to use bias adjusted data. First, we
are concerned at the present lack of consensus regarding
adjustment techniques for different regions. Second,
from a practical viewpoint, the regional bias-adjusted
datasets just described offer no coverage over Alaska,
Scandinavia, and Greenland—regions for which there
is no recourse but to use raw GHCN data. Third, we
are concerned at potentially long delays in the posting
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of bias-adjusted updates from regional sources. Hence

we use raw data, leaving the option of adopting ad-
justments in a post-processing step, for example, using
the gridded climatological adjustments of Legates and
Willmott (1990).

3. Gridding the station data
a. Overview

As outlined in section 4, the monitoring approach
makes use of the statistical distributions of monthly pre-
cipitation within grid cells using data over the period
1960-89. This requires the assembly of gridded time
series. Here, we outline development of the gridded time
series and the difficulties encountered. It is shown that
the sparse station network limits the ability to preserve
the ““true” time series structure of grid cell precipitation,
but is generally sufficient to define the statistical dis-
tributions. This finding bears directly on the monitoring
strategy.

b. Data requirements

The problem of estimating grid cell precipitation from
point data has been addressed in a number of studies
(e.g., Rodriguez-Iturbe and Mejia 1974; Bras and Rod-
riguez-Iturbe 1976a,b). Our objective is to estimate the
true precipitation at the spatial resolution selected. This
implies a spatial average at the scale of the grid cell.
Put differently, the estimated quantities for the grid cell
should have similar statistics to the true quantities. In
practice, the basic problem is that while precipitation
statistics depend on spatial scale, the scale that can be
adequately resolved depends on the density of the sta-
tion network.

For example, consider monthly precipitation statistics
for a 200-km grid cell in comparison to those for 20-
km cells embedded within the larger grid cell. Within
the larger grid cell, there will be variations in precipi-
tation associated with the location of convective sys-
tems, the intensity of rain bands within synoptic-scale
systems, and topography. Because of spatial averaging,
the standard deviation of the precipitation time series
for the larger cell will tend to be smaller than those for
the 20 km cells contained within it. By the same token,
precipitation time series for the 200-km cell may not be
well correlated with the time series for the 20-km cells.
Time-mean precipitation amounts (e.g., over a 30-yr pe-
riod) are likely to be more similar.

With a sufficiently dense station network, the best
estimate of grid cell precipitation is a simple average
of the station values in the cell (the. “drop-in-the-
bucket” approach). Only one or two stations per 20-km
cell would likely yield good results. However, for most
areas of the globe, data are insufficient to generate such
a high-resolution product. Values for cells with no sta-
tions in the cell could be obtained from spatial inter-
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polation with distance weights, but if one must draw
from stations well outside grid cell boundaries, the sta-
tistics will no longer be those of the desired 20-km scale.
While the apparent solution is to use larger grid cells,
more stations will generally be needed to get good cell
values. In practice, one must compromise between
choosing grid cells small enough for the desired appli-
cation (for Arctic-RIMS, use in a hydrologic model),
yet large enough so that the cell statistics are reasonably
representative of the chosen cell size.

Satellite data streams for Arctic-RIMS are assembled
at a 25-km resolution, based on the National Snow and
Ice Data Center North Polar equal-area scalable earth
grid (Armstrong and Brodzik 1995). This resolution
cannot be supported for precipitation. Below we address
data requirements for obtaining grid cell averages using
Monte Carlo simulations applied to January and July
station data from four reasonably well-instrumented
sites over in the southern part of the Arctic drainage
over Canada (Fig. 1). The tests focus on grid cells of
175 km and 350 km for July and January.

c. Monte Carlo simulations

As a first step in the analysis, grid cells of 175 and
350 km were centered over each of the four test sites.
A drop-in-the-bucket approach was used to obtain grid
cell precipitation for every year from 1960 to 1989,
using all of the N stations located within each cell.
Means and standard deviations were then obtained from
the time series. At 350 km, each test cell contains more
than 30 stations, while the 175-km cells contain 6-14
stations. These cell time series and associated statistics
are the best approximations that can be obtained of the
true (but unknown) values. Sampling errors will be pre-
sent, the magnitude of which will depend on station
density and interstation variability. In recognition we
refer to these time series and statistics as those from the
“dense network.” Our approach is best considered as
a comparison between grid cell statistics approximating
the truth with statistics generated from degraded net-
works. That the “true” time series and associated sta-
tistics are not exactly defined does not invalidate this
approach.

For each grid cell, 500 different random selection of
N — 1 stations were drawn. Each random selection was
used to generate new time series using a drop-in-the-
bucket approach. Time means and standard deviations
were computed for each of the 500 time series, along
with the squared correlation between the dense network
and degraded (N — 1 station) time series. Based on the
500 realizations for each cell, we calculated (a) the ab-
solute mean standard error (MSE) of the 30-yr mean
precipitation as a fraction of the dense network mean,
(b) the MSE of the 30-yr standard deviation as a fraction
of the dense network standard deviation, and (c) the
mean-squared correlation between the dense network
and degraded time series. The entire process was then
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FIG. 3. Results from Monte Carlo simulations for four well-instru-
mented regions illustrating how well the dense-network mean pre-
cipitation (1960-89) based on all stations in cells of (top) 175 km
and (bottom) 350 km can be estimated as stations are successively
removed from the cell. Values are expressed as the absolute mean
standard error (MSE) of the mean precipitation as a percentage of
the dense network mean.

repeated for each cell using 500 random selections of
N — 2 stations, N — 3 stations, and so on to N — (N
— 1) stations. Only those stations with at least 25 years
of data were used. Missing station values complicate
the analysis and were hence replaced with the station
means. The use of 500 iterations obviously greatly ov-
ersamples the station network.

July results for the time series means, standard de-
viations and correlations are provided in Figs. 3-5, re-
spectively. Results are shown for up to 30 stations. Sites
24 exhibit similar statistics, while site 1 is different.
Site 1 is located near the foot of the Rocky Mountains
(near Calgary) where topography results in strong local
variability in precipitation. Some conclusions can nev-
ertheless be drawn. For the 175-km cells, a reasonable
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FIG. 4. Results from Monte Carlo simulations for four well-instru-
mented regions illustrating how well the dense network standard de-
viation of precipitation (1960-89) based on all stations in cells of
(top) 175 km and (bottom) 350 km can be estimated as stations are
successively removed from the cell. Values are expressed as the MSE
of the std dev as a percentage of the dense network std dev.

estimate of the dense network mean precipitation (with-
in 15%) can be obtained with only one station in the
cell. With the exception of site 1, this is also true for
the 350-km cells. More stations are needed to estimate
the dense network standard deviation. For the 175-km
cells, having only one station yields a mean error from
20% to 30%. To get within 10%, two to four stations
are required. More stations (four to seven) are under-
standably needed to get the same return for 350-km
cells. Having only one station gives an error up to 55%.
At 175 km, having only one station yields an average
squared correlation with the dense network time series
ranging from about 0.60 to 0.70. For the 350-km grids,
another station is needed to get basically the same re-
turn.
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FiG. 5. Results from Monte Carlo simulations for four well-instru-
mented regions illustrating the squared correlation between the dense
network time series of precipitation (1960-89) based on all stations
in cells of (top) 175 km and (bottom) 350 km and time series gen-
erated when stations are successively removed from the cell. Values
are expressed as the mean-squared correlation with the dense network
time series.

Results for January (not shown) are broadly similar.
There is some evidence that fewer stations are required
to get the same return as July, consistent with the dom-
inance of more widespread synoptic-scale precipitation
in this month as compared to July, when some of the
precipitation is associated with local convection. With
respect to sampling the mean, the coefficient of devi-
ation (standard deviation divided by the mean) is some-
what higher in January as compared to July for sites 1
and 3. Values for the two months are similar for sites
2 and 4.

The results in Figs. 3-5 can be rephrased in terms of
the probability that the mean and standard deviation is
within a given percentage of the corresponding dense-
network statistic. For example, looking again at July, at
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Ave. Number of Stotions in 175 km Grid Boxes

FIG. 6. Average number of stations within 175 km grid cells over
the period 1960-89.

175 km with four stations there is a 54% (site 1) and
100% probability (the remaining sites) of getting the
mean within 5% of the dense-network value. The prob-
ability of obtaining the standard deviation within 5%
with four stations is lower, ranging from 32% (site 1)
to 75% (site 3). Similarly, at 175 km in July with four
stations, the probability of a squared correlation of at
least 0.80 with the dense network time series is essen-
tially 100% at all sites. By contrast, with only one sta-
tion, the probability of a squared correlation of at least
0.80 falls to 28% at site 2 and 0% at the other locations.

A 175-km grid cell is small enough for use with the
Arctic-RIMS hydrologic model. Tt is also on the same
basic scale as the NCEP reanalysis output (2.5°) used
in the monitoring approach. We conclude that preserv-
ing the dense network grid cell statistics (mean, standard
deviation, and time series structure) at this scale requires
at least four stations per box, and more in topographi-
cally complex regions such as site 1. However, Fig. 6
reveals that as averaged over the period 1960-89, only
38% of 175-km grid cells contain even one station. A
similar map constructed for 350-km grids (not shown)
naturally yields more grid cells with at least one station,
but to get good statistics, more stations are needed per
grid cell. A 350-km network is also very coarse, and of
limited utility within Arctic-RIMS. In either case, the
only recourse for obtaining full spatial coverage is spa-
tial interpolation. For many cells the interpolation will
have to draw on information from stations well outside
of the grid box boundaries.

It is hence necessary to evaluate the effects of spatial
interpolation on the precipitation statistics. To this end,
the same basic Monte Carlo approach is applied to the
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four test sites to see how well precipitation time series,
means, and standard deviations from the dense network
can be estimated from interpolation of stations that lie
outside the grid cells. The procedure is applied to the
175-km test cells. Interpolation makes use of a modified
version of the Shepard (1984) scheme. Willmott et al.
(1985) provide a useful review. Interpolation weights
are based on three categories of distance as follows:

if d=r/3, S =d!
it r3<d=r, S = 27/4r[(dlr) ~ 172
if d>r §$=0,

where d is the distance between the station and the center
of the grid cell to be interpolated to, r is the search
radius, and § is the interpolation weight. Values are
defined for the maximum (MAX) and minimum (MIN)
number of data points (station precipitation values) used
in the interpolation. An initial search radius around each
grid cell center is defined from the area of the spatial
domain to be interpolated to and the number of available
data points. If the number of data points within the
search radius exceeds MAX, the closest data points up
to MAX are used. If there are fewer that MIN data points
in the search radius, the radius is expanded until at least
MIN points are found. The interpolator uses spherical
geometry to calculate distances, adjusts for uneven clus-
tering of stations, and allows for extrapolation beyond
the bounds of the station data based on local gradients.

The tests use station data in “rings” of (a) 87.5-175,
(b) 87.5-350, and (c) 175-350 km from each of the grid
cell centers. Tests (a) and (b) hence explore situations
where no stations lie within the 175-km grid cell (true
of 62% of all cells across the pan-Arctic) but stations
are found within either one or two grid lengths distance,
respectively. Experiment (c) assumes that stations are
only found between one to two grid lengths from the
cell center. For each test cell, 500 time series are com-
piled, each based on a random selection of a fixed num-
ber of stations within each data ring (i.e., MIN and MAX
are set equal to each other). As before, results are ex-
pressed as the absolute MSE of the 30-yr mean and
standard deviation as a fraction of the dense network
values, and as the mean-squared correlation between the
interpolated and dense network time series.

Results are shown in Table 1 based on a random
selection of four stations. Four stations in the 87.5-175-
km ring yields estimates of the mean and standard de-
viation comparable to those obtained from the drop-in-
the-bucket approach using several stations (Figs. 3 and
4). The squared correlation with the dense network time
series, however, is lower, ranging from 0.54 to 0.70.
Using four stations in the 87.5-350-km ring also pre-
serves the dense network mean and standard deviation
reasonably well, while the squared correlations drop fur-
ther to between 0.38 and 0.50. Using four stations in
the 175-350-km ring further degrades the squared cor-
relations (0.28-0.36), but even in the worst case (site
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TABLE 1. Simulation results for four well-instrumented sites illustrating how well monthly precipitation time series, means, and standard
deviations within 175-km grid cells from a dense network are represented through interpolation, using four stations located outside the cell

bounds. See text for explanation.

Squared correlation with

MAE of mean as % dense MAE of std dev at %

Site Data ring (km) dense network time series network mean dense network std dev
Site 1 87.5-175 0.70 10.87 11.39
Site 2 87.5-175 0.57 8.10 10.37
Site 3 87.5-175 0.54 4.30 7.92
Site 4 87.5-175 0.54 3.18 7.72
Site 1 87.5-350 0.50 17.62 15.16
Site 2 87.5-350 0.43 9.50 11.34
Site 3 87.5-350 0.38 6.17 12.69
Site 4 87.5-350 0.38 5.97 11.10
Site 1 175-350 0.36 21.12 15.14
Site 2 175-350 0.28 10.67 10.42
Site 3 175-350 0.29 8.02 16.55
Site 4 175-350 0.30 7.97 14.98

1), the mean is estimated to be 21% of the dense network
value.

If the objective is to calculate grid cell means and
standard deviations at 175 km (hence statistical distri-
butions), it seems that with spatial interpolation, one
can get away with the fairly sparse pan-Arctic station
network for most areas. By and large, however, the true
time series structure is captured rather poorly. For the
well-instrumented test sites, using more stations in the
interpolation (e.g., 10 instead of 4) yields better char-
acterization of the time series. However, using a mini-
mum of 10 stations across the Arctic drainage typically
degrades results, as it usually requires drawing from far
outside the grid box bounds. The difficulty in capturing
the dense network time series bears directly on how the
NCEP data are applied in the monitoring approach.

d. The 1960-89 gridded time series

Based on the tests just described, we elected to com-
pile the gridded time series at a resolution of 175 km.
The time series was constructed as follows. If a grid
cell contained at least four stations, precipitation was
determined as the simple average of the stations. This
provides the least-biased grid cell value (the Shepard
interpolation by contrast provides center-weighted val-
ues). However, this takes care of only about 5% of grid
cells (mostly in southern Canada and Scandinavia). The
Shepard interpolation was used for the remainder of the
cells.

The Shepard algorithm was modified to use only the
four stations closest to each grid cell center. For most
cells, this avoids drawing from distant stations. Most
cells contain no stations, such that errors in the resulting
precipitation statistics resemble those in Table 1 (pre-
cipitation distributions are preserved much better than
the time series). For cells with 1-3 stations, results are
obviously better than in Table 1. Further Monte Carlo
tests show that having one station in a cell, and using
the three closest stations outside the cell, yields mean
squared correlations with the dense network time series

exceeding 0.75. Clearly, values obtained over central
Greenland are based on distant coastal sites and are
largely meaningless. In the future, we may adopt a spe-
cial interpolation for Greenland, drawing from data over
the ice sheet collected from automatic weather stations.

Figure 7 shows the resulting mean monthly fields of
precipitation. Cold season precipitation (November—
April) is below 20 mm and locally less than 10 mm
over much of eastern Eurasia, northern Alaska, and
northern Canada. Anticyclonic conditions prevail and
precipitable water is low. High totals along the coasts
of southeast Greenland, Scandinavia, and Alaska reflect
frequent cyclone activity associated with the Icelandic
and Aleutian lows and orographic uplift of moist air
masses. The Atlantic and Pacific-side maxima weaken
during summer. By contrast, summer is the season of
peak precipitation over most land areas. This is due to
increased cyclone activity over land, convective precip-
itation and development of a coastal baroclinic zone
arising from differential heating between the cold Arctic
Ocean and snow-free land. Serreze et al. (2001, 2003)
provide further discussion.

4. Applications of the NCEP reanalysis
a. Overview

It is useful to consider four options for monitoring
precipitation: 1) make do with gridding available up-
dates of station data; 2) make direct use of gridded
precipitation forecasts from numerical weather predic-
tion (NWP) models like the NCEP reanalysis; 3) use
the gridded observed precipitation time series and NWP
output for 1960-89 (forecasted precipitation and other
variables such as vertical motion) to develop linear re-
gression models that can be applied to NWP updates (a
form of statistical downscaling); 4) use nonparametric
methods to constrain NWP output by the statistical dis-
tribution of the gridded observations. A common thread
between options 2—4 is that output could be subse-
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F1G. 7. Fields of observed monthly mean precipitation over the period 1960-89 (mm).

quently adjusted via assimilation of available station
data updates.

The problem with option 1 is that station coverage
since 1990 is much more sparse than for earlier decades
and is insufficient by itself. Regarding option 2, NWP
forecasts of precipitation typically contain large biases
and cannot be used ‘‘as is”’ (Serreze and Hurst 2000).
Option 3 (e.g., multiple linear regression) is clearly

problematic in that it requires faith in the observed grid-
ded precipitation time series. As is evident from the
results in section 3, the time series are of generally poor
quality, meaning that one will be regressing against
noise. The time series of individual stations represent
truth (with due consideration of gauge undercatch and
other biases). However, regression against station time
series runs into problems of scale (relating point ob-
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servations to relatively coarse-scale NWP output). Grid-
ding the resulting station reconstructions also runs into
the same problems discussed in section 3.

Option 4 emerges as the most viable. It recognizes
that 1) biases in NWP precipitation forecasts are at least
in part systematic; 2) systematic biases can be accounted
for through rescaling procedures that require only the
statistical distributions of observed precipitation rather
than accurate representation of the gridded time series
themselves; and 3) rescaling procedures can be applied
to reconstruct precipitation from other variables, such
as aerological estimates of P — ET, which can replace
the rescaled NCEP precipitation forecasts if they are
shown to provide better skill.

The following three sections review the NCEP re-
analysis system used in the monitoring approach, char-
acteristics of the NCEP precipitation forecasts, and their
applications. Applications of P — ET and data assim-
ilation are reserved for section 5.

b. The NCEP reanalysis system

NWP models like the NCEP reanalysis start with a
previous atmospheric forecast as a ““first guess”’ of pre-
sent atmospheric conditions. The first guess is adjusted
through assimilation of observed atmospheric data (e.g.,
rawinsonde profiles, surface marine reports, aircraft ob-
servations of wind and temperature, synoptic reports of
surface pressure, and satellite retrievals of temperature,
humidity, and winds). This results in atmospheric anal-
yses that are used to generate the next forecast. A gen-
eral distinction can be made between variables in the
NCEP archives (Kistler et al. 2001). Type “A” variables
are strongly influenced by observations. Examples are
geopotential height and 4 and v winds on pressure lev-
els. Type “B’ variables are those for which observed
data directly affect the value of the variable, but where
the model also has a strong influence. An example is
humidity on pressure levels. Fields of type “A” and
“B” variables are generally referred to as analyses.
Type “C” variables are those for which no observations
directly affect the variable (often termed forecasted or
predicted variables). Examples are precipitation and ra-
diation fluxes.

NCEP is a retroactive record of more than 50 years
(continually updated) of global atmospheric analyses
and forecasts. The effort involves recovery and assem-
bly of numerous atmospheric datasets, which are then
quality controlled and assimilated with a constant (*‘fro-
zen’’) data assimilation and forecast system. Output
from operational systems (used for routine weather pre-
diction) contain pseudoclimate signals (“‘jumps’) due
to frequent changes in these systems (improvements in
model physics and assimilation techniques). Reanalysis
is intended to eliminate this problem. However, inho-
mogeneities are still present due to changes in the
amount and quality of assimilation data (Kistler et al.
2001).
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The NCEP reanalysis is performed with a T62 model
with 28 vertical sigma levels. Outputs are provided ev-
ery 6 h. Prior to 1958, rawinsonde coverage in the Arctic
was very sparse, greatly degrading the reliability of the
fields. Rawinsonde coverage increased after 1958, and
again in the early 1970s. Satellite data began to be in-
corporated in the 1970s. Starting in 1979, drifting buoys
began to provide regular reports of surface pressure over
the Arctic Ocean. As discussed, we focus on the period
1960-89 for which reasonably complete time series of
observed precipitation can be paired with NCEP records
based on a reasonably robust assimilation database.

Two types of precipitation are computed in the NCEP
model, convective and grid scale (dynamic). Convection
is based on a simplified Arakawa—Schubert scheme (Pan
and Wu 1994), which was found to result in improved
forecasts of precipitation over the continental United
States and Tropics as compared to the previous Kuo
parameterization (Kalnay et al. 1996). Dynamic precip-
itation is parameterized by starting at the top layer of
each model gridpoint column and checking for super-
saturation. If supersaturated, latent heat is released to
adjust the specific humidity and temperature to satu-
ration, with the excess water falling to the next lower
layer. If this next layer is supersaturated, then adjustment
to saturation occurs again and the amount of precipi-
tation is added to that from the higher layer. However,
if the layer is unsaturated, some or all of the precipitation
is evaporated. The process continues downward with all
precipitation that penetrates to the bottom layer allowed
to fall to the surface.

There are actually two NCEP data streams. The pri-
mary system described above, is hereafter referred to
as NCEP-1. The second system, referred to as NCEP-
2, is formally known as the NCEP-Department of En-
ergy (DOE) Atmospheric Model Intercomparison Pro-
ject (AMIP-2) Reanalysis. NCEP-2 addresses some of
the known problems in NCEP-1 and incorporates im-
proved physics. NCEP-2 is unfortunately only available
from 1979 onward. Like NCEP-1 it is updated, but with
a much slower turnaround. The assessments of reanal-
ysis performance that follow include comparisons be-
tween NCEP-1 and NCEP-2.

c. Performance and biases

Monthly time series of precipitation (1960—89) from
NCEP-1 (summed from daily values) were transformed
to the 175-km grid array. This was accomplished using
a Cressman (1959) interpolation with a 500-km radius
of influence. For reasons discussed shortly, this large
interpolation shell is needed to smooth the NCEP-1 out-
put. Figure 8 shows the field of squared correlations
between observed gridded precipitation and NCEP-1
forecasts based on the period 1960-89. Table 2 provides
a monthly summary of the percent of grid cells with a
squared correlation exceeding 0.50 (i.e., for which at
least half the variance is shared). As evaluated in Table
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FiG. 8. Squared correlations between observed and NCEP-1 monthly precipitation over the period 1960—89.

2, overall performance is modest. Performance is best
during the cold months, peaking in October when 35%
of grid cells show a squared correlation exceeding 0.50.
There is an obvious decline in performance during sum-
mer. As is evident from Fig. 8, performance varies re-
gionally. Correlations are strong over western and cen-

tral Eurasia and southern Canada, but are quite weak
over other parts of Eurasia and northern Canada.

As outlined at considerable length in section 3, the
sparse station network means that the resulting gridded
time series that are generated are typically not well rep-
resentative of the 175-km scale. However, Table 2, Fig.



398

TABLE 2. Percent of grid cells by month for which the squared
correlation between observed and NCEP-1 monthly precipitation ex-
ceed 0.50 over the period 1960-89.

Percent (%) of grids with squared

Month correlation exceeding 0.5
Jan 27
Feb 31
Mar 30
Apr 34
May 20
Jun 14
Jul 15
Aug i 21
Sep 36
Oct 35
Nov 35
Dec 28
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8, and other assessments of skill that follow treat these
time series as “‘truth.” This caveat must be kept in mind.
For example, the consistently low correlations over
northern Canada point to poor performance of NCEP-
1. But this is also a region with a very low density of
precipitation monitoring stations (Fig. 2). It is also a
region where mean precipitation in all months is low
(Fig. 7). Even small errors in precipitation measurement
will hence degrade the observed time series. From both
counts it is reasonable to speculate that the true corre-
lations in this region are higher than what is indicated.

The NCEP-1 forecasts contain significant biases. This
is illustrated by time series of winter and summer pre-
cipitation averaged for grid cells in the Ob, Yenisey,
Lena, and Mackenzie basins, the four major Arctic-
draining watersheds (Figs. 9-12). Results from NCEP-
2 are shown for comparison. NCEP-1 totals are system-
atically too high, particularly during summer (note that
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watershed based on observations, NCEP-1, and NCEP-2 data for (top)
winter and (bottom) summer.

gauge undercatch biases in observed precipitation are
generally small in this season). The winter overesti-
mates, at least in part, reflect the use of raw as opposed
to bias-adjusted station precipitation data. Serreze and
Hurst (2000) show that the summer bias in NCEP-1 is
mostly due to excessive convective precipitation. Con-
vection is particularly difficult to parameterize. The ex-
tent to which the problem reflects shortcomings in the
convective scheme per se or is conflated with problems
in other model components remains to be fully resolved.
As shown by Serreze et al. (1998), during summer,
downwelling solar fluxes in the model are too high due
to insufficient cloud cover. This is consistent with the
very high ET rates in the NCEP model, promoting ex-
cessive convection. High precipitation and ET are re-
inforced because soil moisture is updated by the mod-
eled precipitation (Serreze and Hurst 2000). Note that
the NCEP-2 reanalysis is closer to the observations dur-

SERREZE ET AL.

399

Mackenzie Precipitation: Winter
T L) T

100 [ ¥ ]
----- NCEP1
L — — NCEP2 |
80 |- 4
) .
é B
£ L ]
g
k= d
E "
20 - -
ol . s . ]

1960 1970 1980 1990

Year

Mackenzie Precipitation: Summer
300 T T T T T ™
- NCEP1
~ — NCEP2 |
250 .
B p
E o .
g S " 4
g20n 7
& | k
150 -
100-. Ly Loy Ly s ]

1960 1970 1980 1930

Year

FiG. 12. Time series of basin-averaged precipitation for the Mac-
kenzie watershed based on observations, NCEP-1, and NCEP-2 data
for (top) winter and (bottom) summer.

ing winter, but still contains the strong summer biases
of NCEP-1.

Summer is characterized by strong contributions from
convective precipitation (Serreze and Etringer 2003,
manuscript submitted to Int. J. Climatol.). As convective
precipitation tends to occur at local scales, one cannot
expect to obtain reliable summer-month grid cell time
series with a sparse station network. This contributes to
the lower summer correlations (Fig. 8). Furthermore,
convective precipitation is very difficult to parameter-
ize, and there is no reason to think that the summer
biases in the NCEP-1 model just described are entirely
systematic. The NCEP-1 archives include the convec-
tive precipitation component as a separate variable. The
dynamic (large scale) component can be obtained as
total precipitation minus convective precipitation. Fields
of the squared correlation between the NCEP-1 dynamic
precipitation fields and observations are very similar to
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those in Fig. 8. It seems that including the convective
component offers no improvement in skill.

Turning to other problems, NCEP-1 has a formulation
of the horizontal moisture diffusion that causes moisture
convergence, leading to unrealistic snowfall (*“‘spectral
snow”’) over high-latitude valleys in winter (Kistler et
al. 2001). Recent Arctic studies (Serreze and Hurst
2000; Cullather et al. 2000) show that the problem ex-
hibits a definite association with topographic features
and is present year-round. It has been corrected in the
NCEP operational model as well as NCEP-2. NCEP also
provides a precipitation dataset with a posteriori cor-
rection, but according to Cullather et al. (2000), these
fields are still prone to problems and are overly dry.
Smoothing the NCEP-1 data by the Cressman interpo-
lation as we have done provides for a more realistic
spatial pattern when compared to observations (Serreze
and Hurst 2000).

The sensitivity of the squared correlation fields in Fig.
8 was examined with respect to different treatments of
the NCEP-1 data. Tests included interpolating the
monthly totals to the 175-km grid cell array using larger
(750 km) and smaller (250 km) interpolation shells in
the Cressman routine (as opposed to the 500-km inter-
polation shell used in the above results) and basing the
monthly reanalysis totals on sums of daily precipitation
exceeding different thresholds (e.g., 1 mm, 5 mm). No
improvements over those shown in Fig. 8 were found.

Fields of monthly squared correlations between ob-
served and NCEP-2 precipitation were computed for the
11-yr period 1979-89 and compared with results for the
same period using NCEP-1. Although based on a short
record, the NCEP-1 and NCEP-2 correlation fields have
the same spatial structure. However, correlations over
the 11-yr period from both reanalyses are stronger than
shown in Fig. 8, which are based on 1960-89. There is
an average increase of about 0.05 explained variance
for most months. To examine this further, correlations
between observed and NCEP-1 precipitation were ex-
amined for different record lengths, starting with 1960—
89, then for 1961-89, 1962-89, etc., through 1979-89.
A general increase in average correlations is observed
when moving toward the more recent period. We suspect
that this reflects improvements in the assimilation da-
tabase through time.

d. Rescaling the NCEP-1 precipitation forecasts

If the regridded NCEP-1 precipitation forecasts are
to be used in a monitoring strategy, the biases (Figs. 9—
12) must be removed. The chosen approach is to rescale
the forecasts via a probability transformation (Panofsky
and Brier 1963). The procedure uses ranked (i.e, sorted)
values of NCEP-1 and observed precipitation at each
grid cell for 1960-89. The ranks are ascribed cumulative
probabilities. Imagine that an update of NCEP-1 pre-
cipitation is desired for June 2004. We determine where
the June 2004 NCEP-1 value falls in the 30-yr (1960—
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89) NCEP-1 cumulative probability distribution. The
June 2004 NCEP-1 value is rescaled by simply replacing
it with the observed precipitation value at the same cu-
mulative probability. Generally, linear interpolation is
necessary because the NCEP-1 value to be rescaled lies
between two of the ranked NCEP-1 values in the sample
(1960—-89) distribution. If the June 2004 NCEP-1 value
is smaller than the smallest value in the NCEP-1 rank-
ings, it is ascribed the smallest value in the observed
30-yr distribution. If the June 2004 NCEP-1 value is
greater than the largest value in the NCEP-1 rankings,
it is replaced with the largest observed value in the 30-
yr distribution. The rescaling technique assures that any
resulting rescaled NCEP-1 time series has the same
mean and standard deviation as the corresponding ob-
served time series.

To assess skill, the rescaling operation was evaluated
via cross validation (Michaelson 1987) over the period
1960-89. For each year, the NCEP-1 and observed val-
ues for that year were withheld, and the rescaled NCEP-
1 value was obtained from the distributions compiled
from the remaining years. For example, the raw NCEP-
1 and observed values for June 1960 are held out. A
rescaled NCEP-1 value for June 1960 is determined
from the NCEP-1 and observed distributions based on
1961-89 (N = 29). The raw NCEP-1 and observed June
values for 1961 are then withheld. The rescaled value
for June 1961 is determined from the NCEP-1 and ob-
served distributions based on the years 1960 and 1962—
89. The same procedure is followed for June of 1962,
1963, 1964, etc. The rescaled NCEP-1 value for any
given year is hence independent of the observed and
raw NCEP-1 values for that year. The skill measurement
is the squared correlation between the cross-validated,
rescaled NCEP-1 and observed time series (N = 30).
The cross-validated monthly correlation fields (Fig. 13)
have a spatial structure similar to that shown in Fig. 8.
As expected, the squared correlations are lower. De-
pending on the month, from 5% to 12% fewer grid cells
than shown in Table 2 have a squared correlation ex-
ceeding 0.50

Results are further summarized in terms of field cor-
relations. For each year, the field of observed precipi-
tation over the pan-Arctic drainage was correlated
against the field of cross-validated, rescaled NCEP-1
precipitation and also against observed climatology. A
different climatology field was calculated for each year
by withholding the data for that year. For example, the
climatology field for June 1985 is based on grid cell

means using all Junes except 1985. The mean field cor-

relations based on the cross-validated, rescaled NCEP-
1 data range from 0.80 in December to slightly more
than 0.50 in July (Fig. 14). For every month, these are
about 0.10 higher than those based on climatology. The
improvement over climatology gained by the use of the
rescaled NCEP-1 data is hence fairly modest.

An obvious issue with the rescaling approach is that
with the short record lengths (N = 29 for the cross

i
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FiG. 13. Cross-validated squared correlations between observed monthly precipitation and rescaled NCEP-1
precipitation over the period 1960—89 based on a probability transformation.

validation) the observed and NCEP-1 precipitation dis-
tributions are inadequately defined. In particular, one
expects that the extremes will not be well captured. In
recognition, a rerun was conducted using observed and
NCEP-1 precipitation for the longer period 1950-89.
Results were worse than those just described, probably
because of the very sparse assimilation database for the

NCEP-1 model in the 1950s. An alternative was also
examined, adjusting the raw NCEP-1 values by: 1) ex-
pressing the NCEP-1 value as a z score (the anomaly
divided by the standard deviation) with respect to the
NCEP-1 mean and standard deviation; 2) rescaling by
multiplying the z score by the standard deviation of
observed precipitation and adding the mean observed
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Squared Field Correlations: Pan-Arctic
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FiG. 14. Cross-validated squared field correlations for the Arctic
drainage between observed and rescaled NCEP-1 precipitation (solid
line) and between observed precipitation and the observed precipi-
tation climatology (dotted line). Results are averaged over the 1960-
89 period.

precipitation. When evaluated through cross validation,
the squared correlations using this approach are slightly
higher than in Fig. 13. However, the approach has the
habit of yielding occasional negative precipitation val-
ues, which is avoided with the probability transforma-
tion.

5. Data assimilation and use of P — ET
a. Procedures

There are large areas where the cross-validated
NCEP-1 product has little skill. With the aim of using
NCEP-1 in a monitoring scheme, three experiments
were performed. The experiments focus on the Eurasian
sector of the Arctic drainage (20°~180°E longitude) for
which the Groisman FSU and GHCN datasets provide
some station coverage in the 1990s:

Experiment 1 (R + C): Start with time series ini-
tialized to climatology, and replace climatology (C)
by rescaled NCEP-1 precipitation time series (R)
for grid cells where its performance beats clima-
tology;

Experiment 2 (R + C + A): Start with time series
initialized to climatology, replace climatology by
rescaled NCEP-1 precipitation time series for grid
cells where its performance beats climatology (as
in experiment 1), but then further adjust the re-
sulting time series through assimilating station ob-
servations, using a degraded network representa-
tive of what is expected to be available over coming
decades;

Experiment 3: Modify the approach described in sec-
tion 4 of rescaling of NCEP-1 precipitation fore-
casts by including a second variable (rescaled aer-
ological estimates of P — ET). Specifically, replace
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the rescaled NCEP-1 precipitation time series with
precipitation time series based on rescaled P — ET
where the latter perform better. Assess the perfor-
mance of this “enhanced” basic dataset against the
original dataset based on rescaled NCEP-1 precip-
itation alone, then use the “enhanced” dataset in
reruns of experiments 1 and 2.

The observed climatology used for initialization is
the same as that used for Fig. 14: the climatology for
a given grid cell, month, and year is based on with-
holding the data for that year, and calculating the mean
based on all other years.

The data assimilation experiments make use of the
Eurasian station coverage available for 1996. Within this
sector, there were a total of 246 stations in 1996 with
at least one month of data. This represents about 50%
of the network available during the 1980s. All precip-
itation records over the period 1960--89 corresponding
to the 1996 station network were extracted. The station
data were then gridded in a similar fashion to that de-
scribed in section 3: (a) if at least four stations were
found in a grid cell (rarely the case), the cell value was
taken as the simple average of the stations in the cell;
(b) if there were less than four stations in the cell, a
cell value was obtained via the Shepard interpolation
using the four closest stations within two grid lengths
(350 km) of the grid box center; (c) if there were less
than four stations within two grid lengths, no value was
obtained. This approach provided values at 57% of grid
cells in the Eurasian sector. For all data assimilation
experiments, a simple replacement strategy is used,
where existing grid cell precipitation values based var-
iously on climatology, rescaled NCEP-1 precipitation or
rescaled P — ET (depending on the experiment, see
following discussion) are swapped out in favor of the
interpolated station values.

For experiment 1, for each grid cell and month, the
root-mean-square error (rmse) was calculated from the
differences between the time series of observations and
the cross-validated rescaled NCEP-1 precipitation. A
corresponding rmse was then calculated between the
observed precipitation time series and climatology. If
the former rmse was smaller, the climatology time series
for the grid cell was replaced by the rescaled NCEP-1
time series. Otherwise, the climatology time series was
retained. Experiment 2 starts with the results from ex-
periment 1. As just discussed, if an observed precipi-
tation value is available, it replaces the existing grid cell
value.

Regarding experiment 3, several studies (Bromwich
et al. 2000; Cullather et al. 2000; Rogers et al. 2001;
Serreze et al. 2003) have demonstrated the utility of
reanalysis-derived estimates of P — ET in studies of the
Arctic hydrologic budget. Here P — ET is calculated
from the convergence of the vertically integrated mois-
ture flux, adjusted by the time change in atmospheric
precipitable water. Calculated P — ET should not be
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Squared Field Correlations: Eurasia
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FiG. 15. Cross-validated squared field correlations for Eurasia be-
tween observed precipitation and (R + C, solid line) replacement of
climatology by rescaled NCEP-1 precipitation; (R + C + A, dotted
line) replacement of climatology by rescaled NCEP-1 precipitation
and assimilation of a partial station database; (dashed line, C + A)
climatology with assimilation of a partial station database.

confused with forecasted P — ET, based on the forecasts
of each variable. Fields of the squared correlation be-
tween observed precipitation and calculated P — ET
have a spatial structure similar to Fig. 8. Time series of
observed precipitation and calculated P — ET are pos-
itively correlated (Serreze et al. 2003).

Monthly time series of calculated P — ET for the
period 1960-89 were translated to the 175-km grid array
via a Cressman interpolation. As P and P — ET are
correlated, alternative estimates of P (termed here P1)
can be obtained to complement those based on the
NCEP-1 forecasts. The P1 values were obtained by re-
scaling grid cell P — ET against the observed precip-
itation time series, using the same cross validation
scheme as described earlier. At each grid cell and for
each month, the rmse was calculated from the differ-
ences (1960-89) between observed precipitation and the
P1 values. A corresponding rmse was then calculated
from the differences between the observed precipitation
and rescaled NCEP-1 precipitation. If the former rmse
was smaller, the rescaled NCEP-1 value was replaced
by the P1 value. As evaluated over the entire pan-Arctic
domain, P — ET performs better than NCEP-1 precip-
itation (as evaluated from the rmse or the squared cor-
relation) for 20%—-40% of grid cells. The improvement
is most striking in the winter months.

b. Results

We focus first on results from experiments 1 and 2.
Figure 15 gives mean field correlations over the Eur-
asian sector by month over the 1960-89 period based
on the cross-validated rescaled NCEP-1 values with re-
placement by climatology (R + C, experiment 1), and
with additional replacement by assimilation of gridded
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TABLE 3. Squared correlations by season for the Ob, Yenisey, and
Lena watersheds between time series (1960-89) of observed precip-
itation from rescaling (R); from rescaling and replacement of cli-
matology (R + C); from rescaling, replacement of climatology, and
data assimilation (R + C + A). Values in parentheses include P —
ET within the initial rescaling procedure.

Watershed Ob Yenisey Lena

Winter

R 0.36 (0.53) 0.00 (0.05) 0.07 (0.21)

R+C 0.43 (0.59) 0.01 (0.07) 0.12 (0.20)

R+C+ A 0.52 (0.66) 0.04 (0.17) 0.25 (0.39)
Spring

R 0.45 (0.51) 0.49 (0.62) 0.41 (0.54)

R+ C 0.48 (0.55) 0.57 (0.69) 0.44 (0.58)

R+C+A 0.59 (0.65) 0.59 (0.72) 0.68 (0.79)
Summer

R 0.27 (0.42) 0.35 (0.50) 0.67 (0.73)

R+C 0.24 (0.41) 0.34 (0.46) 0.78 (0.83)

R+C+A 0.37 (0.49) 0.65 (0.70) 0.94 (0.96)
Autumn

R 0.43 (0.55) 0.55 (0.61) 0.38 (0.51)

R+C 0.47 (0.56) 0.62 (0.67) 0.44 (0.52)

R+C+A 0.60 (0.67) 0.69 (0.74) 0.61 (0.68)

station data (R + C + A, experiment 2). Also shown
for comparisons are results from simply replacing cli-
matology with the gridded station data (C + A, this can
be considered as a subexperiment). As expected, the
correlations based on R + C + A are substantially high-
er than those for R + C, that is, data assimilation has
obvious benefits. The improvement is greatest in sum-
mer. While the approach shows promise, and might be
improved with more elegant approaches to assimilating
station precipitation data, note that almost the same re-
turn is obtained by simply replacing climatology with
assimilation of data from the degraded network (C +
A).

Table 3 lists cross-validated squared correlations be-
tween the observed time series and from rescaling the
NCEP-1 precipitation (R, the “standard” technique out-
lined in section 4) and from R + Cand R + C + A
(experiments 1 and 2). The values in parentheses are
from experiment 3, for which the rescaled NCEP-1 grid
cell time series are first swapped out with the rescaled
P — ET time series (the P1 values) for grid cells where
the latter performs better. All results are based on ag-
gregating grid cells over the three major Eurasian wa-
tersheds (the Ob, Yenisey, and Lena). This watershed
aggregation is useful in that one of the goals is to use
the precipitation reconstructions within Arctic-RIMS to
assess variability in river discharge to the Arctic Ocean.

Performance is quite mixed. For the Lena in summer,
the simple rescaling approach (R) yields a squared cor-
relation of 0.67, rising to 0.78 for R + C, and to 0.94
for R + C + A. We consider this to be quite good. By
contrast, winter results for the Yenisey and Lena are
extremely poor, as are the summer results fro the Ob.
Some of these points will be returned to shortly. Note,
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FiG. 16. Time series of basin-averaged precipitation for the Ob
watershed for (top) winter and (bottom) summer based on: (solid line,
obs) observations; (dotted line, R + C) replacement of climatology
by rescaled NCEP-1 precipitation and P — ET; (dashed line, R + C
+ A) replacement of climatology by rescaled NCEP-1 precipitation,
P — ET, and assimilation of a partial station database.

however, the improvement that is gained by including
P — ET in the initial rescaling (experiment 3, values in
parentheses). While including P — ET still yields poor
winter results in the Yenisey, for other basins and sea-
sons the increase in skill is striking. For example, for
winter in the Ob, including P — ET increases the
squared correlation based on R by 0.17 and on R + C
+ A by 0.14.

Figures 1618 provide winter and summer time series
of precipitation averaged over the three drainage basins.
These are based on results from experiment 3 that in-
clude replacement by P — ET in the rescaling step. The
R + C dataset captures the major aspects of the observed
time series, but clearly has some problems, especially
with regard to the extremes. The very good performance
in the Lena basin for summer, even without data assim-
ilation, is readily seen. As noted above, performance
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FiG. 17. Time series of basin-averaged precipitation for the Yenisey
watershed for (top) winter and (bottom) summer based on (solid line,
obs) observations; (dotted line, R + C) replacement of climatology
by rescaled NCEP-1 precipitation and P — ET; (dashed line, R + C
+ A) replacement of climatology by rescaled NCEP-1 precipitation,
P — ET, and assimilation of a partial station database.

over the Yenisey and Lena in winter is quite poor, even
for R + C + A. It is important to point out, however,
that the observed variability in winter precipitation for
the Yenisey is itself rather low (the time series is quite
flat, with extremes ranging between 40 and 50 mm),
such that the squared correlations are especially sensi-
tive to errors in both the observations and reanalysis
output. The Lena is also not particularly variable during
winter. There appears to be a trend in Lena basin winter
precipitation, which is not captured in the reconstruc-
tions.

6. Summary and discussion

Our results paint a rather sobering picture of the abil-
ity to monitor precipitation over the Arctic drainage
system and to provide historic time series. The station
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FiG. 18. Time series of basin-averaged precipitation for the Lena
watershed for (top) winter and (bottom) summer based on: (solid line,
obs) observations; (dotted line, R + C) replacement of climatology
by rescaled NCEP-1 precipitation and P — ET; (dashed line, R + C
+ A) replacement of climatology by rescaled NCEP-1 precipitation,
P — ET, and assimilation of a partial station database.

network is sparse. Except for a few areas, the station
density required to provide accurate monthly gridded
time series is not met, even at a fairly coarse 175-km
resolution. This is exacerbated by problems of gauge
undercatch, and the lack of consensus regarding bias
adjustment techniques. Particularly troublesome is deg-
radation of the observing network since about 1990 due
to station closure and, in Canada, a trend toward au-
tomation. It is this very degradation of the network that
merits consideration of approaches such as presented
here in developing a monitoring strategy.

Precipitation forecasts from the constantly updated
NCEP-1 reanalysis, when rescaled to eliminate system-
atic biases, represent a useful starting point. If clima-
tology is replaced by rescaled NCEP-1 values where the
latter beats climatology, the basic spatial structure of
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observed precipitation is captured. With notable excep-
tions (e.g., the Yenisey in winter), the basic time series
structure can be reproduced at the large watershed scale.
Assimilating data from a partial network of stations typ-
ical of that expected to be available in the coming de-
cade (50% of the 1980s coverage) improves skill, as
does replacing rescaled NCEP-1 precipitation forecasts
with rescaled P — ET where the latter performs better.
These findings, however, must be tempered by recog-
nition that the observed time series used to validate via
correlation analysis have significant shortcomings.

An alternative approach has been examined in which
precipitation is reconstructed via multiple linear re-
gression (a downscaling approach), using as predictors
the NCEP-1 monthly precipitation forecasts along with
other reanalysis variables such as computed P — ET
from wind and humidity profiles, monthly sums of up-
ward vertical velocity (omega) at S00 hPa, zonal and
meridional moisture fluxes, sea level pressure, and a
measure of lower-tropospheric stability. The output is
then rescaled using the observed 1960-89 time series.
The apparent skill is comparable to that based on the
rescaling approach using NCEP-1 precipitation and P
— ET. There are issues of colinearity between predictors.
While there are methods to resolve these issues, the
rescaling approach is on a better statistical footing in
that, unlike regression, it does not assume that the ob-
served time series are themselves accurate. Only the
statistical distributions need be known. The rescaling
approach also has the distinct advantage of simplicity
and easier portability to next-generation reanalysis sys-
tems (discussed shortly). We have also used the re-
scaling approaches to reconstruct precipitation at the
station locations, with subsequent interpolation of the
reconstructed station values to the 175-km grid cell ar-
ray. In general, the results are worse than those based
on first interpolating the station data to the grid cell
array.

One way to improve the results (and better assess
performance) is to assemble a better historical station
database. Our understanding is that a significant amount
of data for Russia remains to be digitized. Data rescue
is a planned activity under the National Science Foun-
dation program for the Study of Environmental Arctic
Change (SEARCH) (SEARCH SSC 2001). Another
SEARCH activity is to resolve the problem of bias ad-
justments. Some rapid updates of high-latitude data (dai-
ly), which could be used for assimilation, are being
provided through the Global Telecommunications Sys-
tem, but there are serious quality control issues.

However, as is evident from the Monte Carlo simu-
lations, we will never have enough station data. The
best avenue for improvement is a better atmospheric
reanalysis. NCEP is planning a new global reanalysis,
but will meanwhile provide updates with the existing
system (Kistler et al. 2001). NCEP is also undertaking
a North American Regional Reanalysis (NARR). Efforts
will be needed to evaluate the high-latitude performance
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of the NARR. The SEARCH program envisions un-
dertaking a dedicated Arctic System Reanalysis (ASR).
Initial efforts toward development of the ASR are al-
ready under way.

The best hope for the near future is the European
Centre for Medium-Range Weather Forecasts reanalysis,
known as ERA-40. Data will be made available at the
National Center for Atmospheric Research in Boulder,
Colorado. Current plans are to provide updates as is
done with the NCEP system. We have had the oppor-
tunity to examine several years of Arctic precipitation
data from an early run of ERA-40. The precipitation
forecasts are not greatly improved over the earlier ERA-
15 effort (1979-93), but are much better than those from
NCEP-1.

Until ERA-40 data become available, reconstructions
for Arctic-RIMS will use NCEP-1. The RIMS system
as it presently stands uses the product based on statistical
downscaling. It is updated on a monthly basis. The mon-
itoring system will either migrate to the simpler (and
better) rescaling approach (with assimilation of avail-
able station updates), or will generate both products in
parallel. Presently, rescaling is performed using 1960—
89 data. It might be better to use longer records to get
a fuller distribution. For example, one could use ob-
served precipitation distributions from 1950 to 1989 and
reanalysis distributions for 1960 to 1999.

Reconstructed precipitation fields represent both a
standard Arctic-RIMS product and input into a per-
mafrost/water balance model. For use in the water bal-
ance model daily fields are desired. Temporal disaggre-
gation also makes use of the NCEP-1 precipitation fore-
casts. Briefly, the daily reanalysis totals are interpolated
to the 175-km grid and expressed as a fraction of the
monthly reanalysis total at the grid. Adjusted daily totals
are obtained by multiplying the reconstructed monthly
totals by each of the daily NCEP-1 fractions. To avoid
“drizzle”” events, the NCEP-1 daily fractions are only
computed on the basis of daily events exceeding a se-
lected threshold. The same technique is used to obtain
daily totals from historical monthly time series. The
approach assumes that the daily reanalysis totals are
suspect in terms of absolute magnitude but that the rel-
ative magnitudes of daily events are more correct. A
problem is the spectral noise (‘‘spectral snow’’) in the
NCEP-1 output. This is presently addressed through
smoothing the NCEP-1 output. Again, better results are
anticipated using ERA-40.
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