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It is appropriate to consider water quantity and water
quality as two facets of water resources. Both facets are
intimately connected to the hydrological cycle, which it-
self is a component of the Earth’s climate system. Since
human activities and health are so connected to water
resources, it is essential to determine how far into the
future we can predict the condition of the water resources
of a region with a sufficient level of confidence. When
predictions are not possible, resilience must be built into
a water system so that human (and natural) needs are
not negatively affected. Even when skillful predictions
are possible, they are seldom completely accurate. Thus
uncertainty needs to be included when scientific analy-
ses and predictions are used for water resource planning
and management, particularly for issues such as adapta-
tion or risk management. The prediction of weather and
climate are essential aspects of planning for water re-
sources in changing environmental conditions.

Lorenz (1979) proposed the concept of forced and free
variations of weather and climate. He refers to forced
variations as those caused by external conditions, such
as changes in solar irradiance. Volcanic aerosols also
cause forced variations. He refers to free variations as
those which “are generally assumed to take place inde-
pendently of any changes in external conditions”. Day-
to-day weather variation is presented as an example of
free variations. He also suggests that “free climatic vari-
ations in which the underlying surface plays an essen-
tial role may therefore be physically possible”.

However, if the ocean surface and/or land-surface
changes over the same time period as the atmosphere
changes, then the non-linear feedbacks (i.e. two-way
fluxes) between the air, land and water, eliminate an in-
terpretation of the ocean-atmosphere and land-atmos-
phere interfaces as boundaries. Rather than “boundaries”,
these interfaces become interactive media (Pielke 1998a,
2001). The two-way fluxes that occur between the atmos-
phere and ocean, and the atmosphere and the land- sur-
face (as detailed in Part A of this book), must therefore
necessarily be considered as part of the predictive sys-
tem. On the time scale of what we typically call short-
term weather prediction (days), important feedbacks
include biophysical (e.g. vegetation controls on the Bowen

ratio), snow cover, clouds (e.g. in their effect on the sur-
face energy budget), and precipitation (e.g. which changes
the soil moisture) processes. This time scale is already
considered to be an initial value problem (Sivillo et al.
1997) since operational numerical weather prediction
models are routinely reinitialised twice daily. Seasonal
and interannual weather prediction include the follow-
ing feedbacks: biogeochemical (e.g. vegetation growth and
senescence); anthropogenic and natural aerosols (e.g.
through their effect on the long- and short-wave radiative
fluxes and their effects on cloud microphysics and hence
the hydrological cycle); sea ice; and ocean sea surface tem-
perature (e.g. changes in upwelling such as those associ-
ated with an El Niño) effects. For even longer time peri-
ods (of years to decades and longer), the additional feed-
backs include biogeographical processes (e.g. changes in
vegetation species composition and distribution), anthro-
pogenic-caused land-use changes, and deep ocean circu-
lation effects on the ocean surface temperature and sa-
linity. In the context of Lorenz’s (1979) terminology, each
of these feedbacks are free variations.

We begin to tackle this problem by using a hierarchy
of models. We will consider two examples to illustrate
this important point. First example is the 0-dimensional
dynamical model (having no spatial dimensions, i.e.
0-th order in space) which fully and non-linearly cou-
ples radiation, biota, and the hydrological cycle, with
other components of the Earth climate system. This step
is necessary to obtain a fundamental theoretical under-
standing of the first-order effects on planetary climate.
These first-order effects tend to be associated with both
positive and negative feedbacks. It seems particularly
important to include negative feedbacks, or the “homeo-
static” mechanisms in the language of Watson and Love-
lock (1983), in low-dimensional dynamical models.
Negative feedbacks tend to be underrepresented in more
complex infinite dimensional dynamical models, involv-
ing one or more spatial dimensions, and therefore are
less well understood.

Insight from simple non-linear dynamical models
should serve as foundations for the development of more
complex models (Shackely et al. 1998; Ghil and Childress
1987). Negative feedbacks coming from coupling with
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biota have been explored in models such as Daisyworld
(Meszaros and Palvolgyi 1990; Von Bloh et al. 1997, 1999;
Nevison et al. 1999; Weber 2001), though full coupling
with other components of an Earth-like climate system
has yet to be explored. Still, even in simple models, new
non-linear effects are only now being discovered (Nord-
strom and Gupta 2002), a point which serves to empha-
size the importance of understanding the role of posi-
tive and negative feedbacks on the climate system.

The second example is the so-called EMICs (Earth Sys-
tem Models of Intermediate Complexity; Claussen 2001).
These models explicitly simulate the interactions among
as many components of the natural Earth system as pos-
sible. They include most of the processes described in
comprehensive models of atmospheric and oceanic cir-
culation – usually referred to as “climate models” – al-
beit in a more reduced, i.e. a more parameterised form.
Therefore, EMICs are considered to test scientific ideas
in a geographically explicit model environment, not to
make the most detailed and realistic prediction.

Regarding predictability we can distinguish between
prediction, or forecast of the first and the second kind
(Lorenz 1975). An example of a commonly known fore-
cast of the first kind is short-term weather forecasts, i.e.
the weather forecast for several days into the future is
predicted given accurately monitored initial and bound-
ary conditions. A prediction of the second kind occurs
when boundary conditions determine the state of the
system, and initial conditions are no longer important.
Currently, longer term weather predictions of the first
kind have been successful only in the case of forecast-
ing seasonal weather such as a six month forecast of El
Niño (Landsea and Knaff 2000) when the oceanographic
monitoring system had already indicated an eastward
moving Kelvin wave of tropical warm water.

The Intergovernmental Panel on Climate Change
(IPCC) uses the term “projection” to indicate that a cli-
mate forecast, of the second kind is meant. However, the
climate system of the future has not been shown to be
independent, for example, of the initial (current) Earth’s
land cover. Moreover, we conclude that the term “pro-
jection” is misleading, because it suggests some more or
less complete prediction of the future. However, most
climate projections of the IPCC include only changes in
the composition of the atmosphere, whereas other natu-
ral and anthropogenic forcings, such as solar variabil-
ity, vegetation dynamics and land use (see Part A), are
likely to affect future climate. We therefore propose to
use the term “sensitivity experiments”, when referring
to the IPCC model results.

Predictability of climate can be limited owing to the
non-linearity of the Earth system. Following Lorenz’s
(1968) terminology, non-linear systems, even without
any external unsteady forcing, can be “transitive” or “in-
transitive”, i.e. the statistics of the system can be sta-

tionary (ergodic) or can change with time, respectively.
So far, all model simulations (e.g. Cubasch et al. 1994)
have shown that the global climate system seems to re-
spond almost linearly to greenhouse-gas forcing, if the
next several decades, perhaps up to a century, are con-
sidered. However, since these are sensitivity model re-
sults, we do not know if this linearity will remain when
the entire spectrum of natural- and human-forcings on
these time scales are included. At the regional scale, the
climate clearly exhibits intransitive behaviour as shown
for the thermohaline circulation in the North Atlantic
(e.g. Ganopolski and Rahmstorf 2001), Sahelian rainfall
(Wang and Eltahir 2000), and Northern African deserts
(e.g. Claussen et al. 1998). Thus at the global scale, in-
transitive behaviour cannot be excluded, because most
models have not yet incorporated all feedbacks of the
climate system. This argument further supports the use
of the term “sensitivity experiment” instead of “projec-
tion”, when referring to the IPCC results.

There are actually two types of prediction with re-
spect to water resources. The first type of prediction in-
volves an equilibrium impact of environmental change,
δI. We can write this mathematically as

δI = f1(δA, δB, δC, …) (E.1)

or in some cases as an implicit function

δI = f2(δA, δB, δC, …, δΙ) (E.2)

where δA, δB, etc., represent a set of environmental
perturbations from a reference state of basic variables A,
B, etc. For example, δI could be the effect on river flow at
a stream gauge (i.e. I is the river flow itself). δA could
then be the radiative effect of increased CO2 and other
anthropogenically-emitted greenhouse gases with re-
spect to the pre-industrial level. δB could be the biologi-
cal effect of increased CO2; δC could be human-caused
landuse change; δD the direct radiative effect of anthro-
pogenic aerosols; δE the indirect effect of these aerosols
on cloud microphysics (cloud condensation nuclei, ice
nuclei), etc. The choice of the perturbation depends on
what is the specific impact of concern. δI can either rep-
resent a state variable or the statistics of a state variable
such as a probability density function. δI can be time
dependent (i.e. in nonequilibrium as a result of a change
in f1). When just one perturbation or a small number of
perturbations on a subset of perturbations is imposed,
the effect on δI is said to be a sensitivity experiment.
When all significant (on δI) perturbations are included,
the effect on δI is said to be a realisation. If a spectrum of
perturbations are performed, which represent all possi-
ble situations, the experiment is referred to as an ensem-
ble. Any one realisation selected from this ensemble is
called a scenario. The uncertainty in terms of δI will be
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determined from the distribution (and probability of
occurrence) of the scenarios. Figure E.1, adapted from
Pielke (2002), illustrates this perspective of prediction.

Four classes of prediction are illustrated in the fig-
ure. In this schematic, the universe of all possible future
environmental conditions are given by U, while the abil-
ity of a particular class of prediction to forecast the fu-
ture is defined by A. If A covers a small area of U it is, of
course, less likely to actually predict what the future will
be. Indeed, with a sensitivity study A could lie outside
of U. In the figure, a sensitivity study varies only a sub-
set of environmental perturbations and/or does not in-
clude all important Earth system feedbacks. A scenario
includes all important environmental perturbations and
Earth system feedbacks, but is only a single realisation
(or subset of realisations) from the spectrum of predic-
tions possible from the non-linear, chaotic Earth sys-
tem. Only when the envelope (the ensemble of all reali-
sations) of the possible future conditions is obtained, is
the prediction an actual projection (additional discus-
sion of these classes of prediction are presented in Mac-
Cracken 2002, and Pielke 2002).

As an example, the IPCC (1996) is actually a sensitiv-
ity study since not all anthropogenic effects on the
Earth’s climate system were considered. The IPPC re-
port included the radiative effect of increased human-
input greenhouse gases and aerosols, but did not include
other important effects, such as land-use change, as dis-
cussed in Part A of this book. Moreover, since the IPCC
then used downscaling to obtain regional estimates of
climate change, the diversity of regional results among
the GCM models produce impact estimates dI, dI/dt (as
discussed in the following text) which makes the size of A
even smaller for the regional scale, than for the global

scale. The vulnerability approach, in contrast, starts with
the assessment of all values within U (as best as we can
estimate the maximum realistic size of U), and, only then,
seeks to determine which impacts are more likely than
others.

The Earth system is considered as a dynamic system
which includes the natural spheres (atmosphere, bio-
sphere, hydrosphere, etc.) and the anthroposphere (econ-
omy, society, culture, psycho-social aspect, etc.) and the
interactions between them (Schellnhuber 1998). The defi-
nitions of a sensitivity, realisation, ensemble, and scenario
remain the same when the impact must be assessed by
analysis of a dynamic system yet the assessment of I(t),
i.e. the impact as a function of time, becomes much more
difficult in this case.
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The function given by Eq. E.3 represents a differen-
tial equation which is more difficult to solve than Eq. E.1.
Note that equilibrium is determined by setting dI/dt = 0
and solving for I. Thus the dynamic description in Eq. E.3
is more general than the static equilibrium in Eq. E.1 or
Eq. E.2. In particular, the description allows an assess-
ment to be made of the stability or resilience properties
of equilibrium points. The assessment becomes more
difficult when the function g is non-linear, since features
such as chaotic motion or complex bifurcation scenarios
can arise. In these cases “surprises” can occur over time
which are impossible to predict. For example, a stable
equilibrium within an ecosystem can become unstable,
which might lead to completely new structural proper-
ties in the system.

Fig. E.1.
Schematic of different classes
of prediction (for explana-
tions see text; adopted from
Pielke 2002)
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The accurate prediction of δI or dI/dt requires that
f1, f2 and g be accurate representations of reality. If, how-
ever, there are large uncertainties in the specification of
the perturbations and/or in the form of f1, f2 and g, the
range of δI and dI/dt that results could be quite large.
The choice of just one value of δI or dI/dt (or a limited
subset of each) from a limited set of perturbations us-
ing f1, f2 and g will be incomplete, even if it is assumed
that f1, f2 and g are accurate.

As an alternative, in the case of equilibrium consid-
erations, the vulnerability of the water resource (or other
environmental resource) can be determined by estimat-
ing what the maximum risks are. Equations E.1 and E.2
can be rewritten as

|δI|max = | f1(δA, δB, δC, …)|max (E.4)

|δI|max = | f2(δA, δB, δC, …, δI)|max

where |δI|max is the largest effect that results from the
perturbations of the environmental conditions. In order
to determine the maxima, however, it is necessary to know
the ranges of possible values of the independent vari-
ables δA, δB, etc. Yet one might also determine the maxi-
mum possible values of δI when we assume only small
changes in these variables. Mathematically this can be
achieved by calculating the gradient of δI with respect to
the input variables, i.e.

∇
r
A, B, …, δI = ∇

r
A, B, …, f1(δA, δB, …) (E.5)

and analogously for f2 (Lüdeke et al. 1999).
When considering a dynamic system, an analogous

analysis is possible by considering the interval G(A, B, C,
…, I) of possible values on the right hand side of Eq. E.3.
We then obtain a so-called differential inclusion (Aubin
and Cellina 1984), i.e.
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which then allows a computation of the set of admissible
“futures” of the possible trajectories I(t) which are real-
isable by the assumed set of independent variables A, B,
C, … This allows an evaluation of the maximum impact,
Imax, at any arbitrary point in time.

Using these approaches, as long as f1, f2 and g are re-
alistic representations of the climate system, policy-mak-
ers can concentrate their efforts at reducing the contri-
butions of the perturbations that most contribute to δI
or dI/dt. If these perturbations cannot be manipulated,
this information also needs to be communicated to
policy-makers.

The accurate determination of f1, f2 and g may not be
possible. With respect to the future climate, general cir-
culation models (GCMs) have been applied (e.g. IPCC
1996), however, they have been used as sensitivity experi-
ments since, in general, only one or two perturbations
have been initiated i.e. the radiative effect of an anthro-
pogenic increase in CO2 and other anthropogenic green-
house gases or the radiative effect of an anthropogenic

Fig. E.2.
Ecological vulnerability/
susceptibility links in envi-
ronmental assessment as
related to water resources
(from Pielke and Guenni 1999)
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increase in aerosols. GCM and EMIC land-cover change
simulations have also been performed as sensitivity ex-
periments (e.g. Brovkin et al. 1999; Claussen et al. 2001;
Chase et al. 1996; Pitman et al. 1999; Bounoua et al. 2000).

An alternative approach is to determine what values
of δI or dI/dt result in undesirable impacts. What are
the thresholds beyond which we should be concerned?
This approach involves starting with the impacts model
(what is sometimes termed an “endpoint analysis” or
“tolerable window approach”) and, without using f1, f2
or g, determine the magnitude of δI or I

.
 that must occur

before an undesirable effect occurs. The impact func-
tions f1, f2 and g are then used to estimate whether such
thresholds could be reached under any possible envi-
ronmental variability or change. The estimates for what
is realistic, with respect to climate, would include the
GCM results but would also utilise palaeorecords, his-
torical data, worst case combinations from the histori-
cal data, and “expert” estimates. Such an approach would
provide a risk assessment for policy-makers that is not

constrained by uncertain predictions. Figure E.2, from
Pielke and Guenni (1999), illustrates a generic schematic
as to how to assess δI and dI/dt for water resources.

Pielke and Uliasz (1998) and Pielke (1998a) discuss
this type of an approach to estimate uncertainty in air
quality assessments. Lynch et al. (2001) apply this tech-
nique to assess the sensitivity of a land-surface model
to selected changes (plus and minus) of atmospheric vari-
ables such as air temperature and precipitation. Hubbard
and Flores-Mendoza (1995) assess the effect on corn,
soybean, wheat and sorghum production of positive and
negative changes of precipitation and temperature in the
United States. Tóth et al. (1997) and Petschel-Held et al.
(1999a) have used this “inverse concept” in the form of
the dynamically tolerable windows approach within an
integrated assessment of climate change. Similarily,
Alcamo and Kreilemans (1996) apply the general idea of
the end-point analysis within their “safe landing analy-
sis” of near term climate protection strategies. Figure E.3
illustrates an example where warmer and cooler condi-

Fig. E.3. Simulated water budget responses to uniform change scenarios in the North Fork American river basin of California. a, c, and d
illustrate mean changes under scenarios in which mean temperatures are changed, and b provides the percentage changes as function of
changes in both mean temperature and mean precipitation (contours for uniform change scenarios – dashed where negative; symbols for
GCM model sensitivity experiments; from Jeton et al. 1999)
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tions are assessed in an impacts model to estimate the
sensitivity of water resources in this region to this as-
pect of climate variability and change.

In recent years there has been a growing number of
studies and modelling attempts on global environmen-
tal change which take uncertainty into account. Within
these studies one might want to distinguish between
(1) classical probabilistic approaches, (2) new, quantitative
approaches based on theoretical frameworks such as
cultural theory and (3) qualitative, yet formal approaches.

1. More traditional approaches within integrated assess-
ments of climate change are taken, for example, in the
PAGE 95 model (Plambeck and Hope 1996) or in the
ICAM 2.0 and 2.5 models (Dowlatabadi and Morgan
1995) which use probability distribution functions to
represent uncertainties in parameters and functional
relationships. The implication of learning as the ma-
jor process in reducing uncertainties is central to the
studies by Kolstad and Kelly (1999). A recent overview
on the issue of uncertainty in climate change assess-
ments is given in Schellnhuber and Yohe (1998) or
Dowlatabadi (1999).

2. An innovative approach is taken within the TARGETS
modelling framework (Rotmans and deVries 1997;
Hilderink et al. 1999) where uncertainties are related
to three different world views, based on cultural

theory: individualistic, egalitarian and hierarchical.
Different parameterisations of the model may then
be determined. There is also a strong water compo-
nent within this modelling framework from which
to compute the basic supply and demand issues of
water resources (Hoekstra 1996).

3. There is a recent attempt to apply qualitative model-
ling techniques to the analysis of environmental
change. Originally suggested by the German Advisory
Council on Global Change (WBGU 1994) and in co-
operation with the Council, and further developed by
Schellnhuber et al. (1997) and Petschel-Held et al.
(1999b), the syndrome approach tries to identify ma-
jor patterns of civilisation-nature interactions, which
govern the dynamics of environmental change. Most
interesting in the present context is the 1997 Annual
Report of the Council (WBGU 1999) which focuses
on the sustainable use of freshwater resources.

As discussed here, a vulnerability assessment provides
a comprehensive framework within which to estimate
environmental risk. This is in contrast to starting with a
scenario approach which limits the spectrum of estimates
to what can actually occur in the future. With the sce-
nario approach, for example, environmental “surprises”
(Canadell 2000) will be missed. These two divergent ap-
proaches are discussed further in the next chapter.
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