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Water in the West is allocated among diverse uses and is subject to mount-
ing demand caused by a growing population and changes in institutional
practices (Pulwarty 1995; Diaz and Anderson 1995). Demand coupled with
climate variability and potential climate change presents formidable chal-
lenges for water managers. For example, the U.S. Bureau of Reclamation has
indicated that if the West were to experience a drought similar to that of
1931–1940, the water needs of the lower Colorado River basin would not be
met (el-Ashry and Gibbons 1988). These concerns have stimulated attempts
to develop better water-management tools and improved information on
snowpack. A key goal is to improve hydrologic forecasts.

Currently, hydrologic forecasts are made with the extended streamflow
prediction (ESP) procedure (Day 1985). ESP is based on a hydrologic model
that is calibrated with observed precipitation and temperature data up to the
beginning of the forecast interval and then run with an ensemble of tem-
perature and precipitation data from every past year in the historical record.
The model thus provides an ensemble of possible outcomes given the ante-
cedent conditions (e.g., soil moisture, water equivalent of the accumulated
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snowpack) at the start of the forecast. Because the methodology of ESP
weights equally the history of each past year, it yields a wide range of possible
outcomes.

Although advances in climate research in recent decades have led to
potentially useful weather predictions and climate outlooks (e.g., Kalnay et
al. 1998; Barnston et al. 2000), this information is not used in ESP model-
ing. The use of historical data in ESP modeling means that accuracy of the
forecasts is entirely dependent on the effect of basin initial conditions on
future runoff. Replacing the ensemble of historical data used in ESP model-
ing with an ensemble of weather forecasts and climate outlooks (i.e., using
weather forecasts and climate outlooks as input to hydrologic models) may
reduce the range of possible outcomes and increase the accuracy of hydro-
logic forecasts.

This chapter examines ways in which information on weather and cli-
mate can be useful in managing water resources in the western United States.
We focus on two timescales of variability. On intraseasonal timescales (1–2
weeks) we examine the possible use of output from global-scale atmospheric
forecast models in generating short-term streamflow forecasts. On seasonal
timescales we assess the role of El Niño and La Niña events in shaping the
seasonal snowpack, which may then be used in forecasting seasonal hydrology.

INTRASEASONAL HYDROLOGIC FORECASTS
This section addresses the hypothesis that coupling short-range atmospheric
forecast models with hydrologic models can improve upon the traditional
ESP methods (e.g., Day 1985). As a demonstration of this approach, over
2,500 individual eight-day forecasts from the National Center for Environ-
mental Prediction (NCEP) reanalysis project (described later) are used as
input to the U.S. Geological Survey’s (USGS) Precipitation Runoff Modeling
System (PRMS) to forecast stream flow in the Animas River basin in south-
western Colorado (Figure 5.1). The Animas River basin has a drainage area
of 1,820 km2 at elevations that range from 2,000 to 4,000 m. The surface
hydrology of the Animas River basin is dominated by snowmelt, which is
typical of most small basins in the mountainous areas of the continental
western United States. This basin therefore provides a good test of the feasi-
bility of using atmospheric forecasts for predicting runoff in that region.

NCEP Reanalysis
The NCEP reanalysis project (Kalnay et al. 1996) produced a fifty-one-

year (1948–1998) record of global atmospheric fields derived from a Numeri-
cal Weather Prediction model that was kept unchanged over the analysis
period. Use of fixed conditions in the reanalysis eliminates pseudoclimatic
jumps in the climate time series caused by upgrades in the modeling system
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used at NCEP, thus allowing for assessment and correction of systematic
problems in the model. The model used for reanalysis is identical to the
Medium Range Forecast model implemented operationally at NCEP in Janu-
ary 1995 (Basist and Chelliah 1997), except that the horizontal resolution is
twice as coarse in the reanalysis version. The model employs a horizontal
grid spacing of approximately 210 km. Every five days during the 1948–1998
period, a single realization of an eight-day atmospheric forecast was run, and
the output was archived along with the standard (day zero) reanalysis output.
This procedure provides over 2,500 eight-day forecasts that can be compared
with observations.

The USGS Precipitation Runoff Modeling System
The PRMS hydrologic model (Leavesley at al. 1983; Leavesley and Stannard

1995) is a distributed-parameter, physical watershed model. Parameters are
spatially distributed on the basis of hydrologic response units (HRUs), which
are distinguished on the basis of characteristics such as slope, aspect, eleva-
tion, vegetation type, soil type, and distribution of precipitation. A typical
area for an HRU is 5 km2. Each HRU is assumed to be homogeneous in its
hydrologic response. The PRMS model generally is run with daily data on
precipitation and maximum and minimum temperature, which are available
for most climate stations across the United States.

Because the station network in the Animas Valley is not dense enough
to allow direct measurements on each individual HRU, the daily values at
meteorological stations within and around the valley (Figure 5.1) are dis-
tributed to the HRUs within the basin. To achieve this, latitude (x), longi-
tude (y), and elevation (z) were used as independent variables in a multiple
linear regression (MLR) model to establish the influence of each station on
mean spatial variations in precipitation and maximum and minimum tem-
perature throughout the basin. Use of the station x and y coordinates in the
regression model provides information on the local-scale influences on pre-
cipitation and temperature that are not related to elevation (for example,
distance to a topographic barrier). Daily mean values of precipitation and
maximum and minimum temperature, as calculated from a subset of stations
in the region, are then used with the xyz MLR relations to distribute pre-
cipitation and temperature over the basin according to the mean values of
x, y, and z for each HRU. A separate regression model was developed for
each month to account for seasonal variations in the relationships of topog-
raphy with precipitation and temperature. The distributed data are used to
compute an energy and water balance for each HRU. The sum of the water
balances of each HRU, weighted by unit area, produces the daily watershed
response. In basins the size of the Animas (1,820 km2), the travel of water
through the channel network typically occurs on timescales of less than one
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5.1 Map showing the meteorological station network (small triangles) of the San
Juan River basin and the Animas River subbasin, Colorado. Locations of stations
providing temperature data (circles) and precipitation data (squares) for model-
ing are shown.
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day. For this reason, we chose not to include flow routing routines in our
hydrologic simulations.

Snow is the major form of precipitation and source of stream flow in the
Animas River basin. PRMS simulates the accumulation and depletion of a
snowpack on each HRU. Snowpack is maintained and modified as both a
water reservoir and a dynamic heat reservoir. Snowmelt does not occur until
the snow surface temperature warms to 0°C, and outflow at the base of the
snowpack does not occur until the entire snowpack warms to 0°C. A water
balance is computed daily, and an energy balance is computed twice each day.
Lack of data on wind speed, humidity, and radiation means that the energy
balance computations must be greatly simplified. These computations in-
clude estimates of incoming shortwave and longwave radiation and the heat
content of precipitation. The turbulent heat transfers of latent and sensible
heat are approximated. Solar radiation is distributed to each HRU on the
basis of slope and aspect. Neither shortwave nor longwave radiation is mea-
sured at the climate stations in this region, so these variables are estimated
from their empirical relationships with temperature and precipitation.

Precipitation and snowmelt ultimately reach the channel network through
surface runoff, subsurface flow, or groundwater. The first opportunity for
precipitation and snowmelt to generate stream flow is via surface runoff,
which takes place if the net water input exceeds the infiltration capacity of
the soil over the entire HRU or if some areas of an HRU become completely
saturated (this typically arises in lower regions of an HRU where topography
causes an accumulation of water). PRMS simulates both of these processes.
In the Animas River basin the combination of highly pervious soils (maxi-
mum infiltration rate is assumed to be 50 mm/day) and moderately low daily
precipitation and snowmelt means that only a small fraction of the basin
area is completely saturated. Thus contributions from surface runoff are small,
and almost all runoff in the Animas River basin is derived from subsurface
and groundwater flow.

The dominance of subsurface flow results in a time lag between surface-
water inputs and the hydrologic response of the basin. In the PRMS model,
water percolates to deep soil zones and groundwater reservoirs after the wa-
ter-holding capacity of the upper soil layer is exceeded. Water recharges the
groundwater reservoir at an assumed rate of 3 mm/day. Water in excess of
this rate becomes inflow to the subsurface, which drives subsurface flow.
Subsurface flow is the rapid movement of water through the matrix and
preferential flow paths composing the soil and unsaturated-zone profile to
the stream channel. Subsurface flow increases nonlinearly with the amount
of water stored in the subsurface reservoir. The response time of the catch-
ment is therefore faster if subsurface storage is high. For hydrologic forecast-
ing, accurate initialization of subsurface conditions is important. Base flow



Linkages Between Prediction of Climate and Hydrology

74

from the groundwater reservoir is computed as a linear function of ground-
water storage and occurs on timescales of days to weeks, thus introducing
additional lags into the hydrologic system.

Hydrologic Forecast Procedures
Assuming a perfect hydrologic model, the accuracy of hydrologic fore-

casts depends on the skill of atmospheric forecasts and the accuracy with
which initial conditions can be specified over the basin. The most important
initial conditions for hydrologic forecasts are the water equivalent of snow
and the soil moisture on each HRU and the amount of water stored in the
subsurface and groundwater reservoirs. We establish these initial conditions
by forcing PRMS with distributed station observations of precipitation and
maximum and minimum temperature for the time period of the NCEP re-
analysis, starting three years prior to the day before the first forecast date.
The state variables (e.g., water equivalent of snow, soil moisture, subsurface
storage) are saved for every five days and then used as initial conditions for
the eight-day forecasts.

The hydrologic simulations obtained with distributed station data are
used to assess the accuracy of the hydrologic forecasts. Taking modeled val-
ues as truth assumes a perfect hydrologic model and allows us to focus atten-
tion on hydrologic effects of errors in the atmospheric forecasts. If observed
runoff is used as truth, situations may arise for which errors in the atmo-
spheric forecasts are of opposing sign to errors in the hydrologic model
simulations, thus tending to cancel them. This would provide a misleading
perception of reliability for the hydrologic forecasts.

Following the simulations of runoff based on station data, two hydro-
logic forecast experiments were performed. In the first experiment, eight-day
hydrologic forecasts were run using constant precipitation and maximum
and minimum temperatures computed from historical station data for each
forecast period. This is termed the climatology experiment. It provides output
analogous in many respects to the mean response in ESP simulations and
quantifies the skill that is possible when forecasts are based on historical
station data. The second experiment forces the PRMS hydrologic modeling
system with the eight-day forecasts of precipitation and maximum and mini-
mum temperature from an average of the nine NCEP model grid points
surrounding the Animas River basin. This is termed the forecast experiment.

At the NCEP model grid points overlying the Animas basin, the raw
NCEP forecasts show systematic biases in predicting temperature and pre-
cipitation. Winter and spring temperatures are too low, summer tempera-
tures are too high, precipitation in late winter is too high, and precipitation
in summer and early autumn is too low. These biases are markedly different
at various forecast lead times (i.e., biases for one-day forecasts differ from the
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hydrology of the Animas River basin. Runoff is highest and most variable in
May and June.

Hydrologic Forecasts Using Climatology
In the climatology experiment, forecast errors in maximum and mini-

mum temperatures and precipitation are similar for different forecast lead
times because these variables are set to constant mean values on the basis of
historical data for each forecast period. The small changes in error with
forecast time occur because, with the forecast runs spaced five days apart,
different data are used to verify forecasts at different lead times. Forecasts of
snowmelt, actual ET, and runoff, as computed by the model, were lowest at
the start of the forecast cycle because of the influence of initial conditions
on forecasts. To facilitate direct comparison with the NCEP forecasts, the
climatological forecasts were run every five days. Results for the climatology
experiment are presented in the left column of Plate 11.

Hydrologic Forecasts With NCEP Output
The accuracy of the forecasts based on output from the NCEP model is

presented in the middle column of Plate 11. The right column is the differ-
ence between the forecast and the climatology experiment (middle column
subtracted from the left column) and represents the improvement provided
by using forecasts instead of climatology.

Only in some cases is the accuracy of the NCEP forecasts superior to
that of forecasts based on climatology (middle and right columns of Plate
11). Generally, forecast accuracy is limited by the coarse horizontal resolu-
tion of the NCEP model (for example, precipitation varies on the subgrid
scale) and deficiencies in modeling of physical phenomena. For example,
summer precipitation may be poorly represented because of inadequacies in
parameterization of convective processes. The poor forecasts of precipitation
limit the use of output for river basins where the surface hydrology is domi-
nated by rain. In snowmelt-dominated river systems typical of the western
United States, however, short-term variation in runoff is influenced more by
variation in temperature than by variation in precipitation. Thus accurate
hydrologic predictions are more likely. In the Animas River basin, because
the highest accuracy in forecasts of maximum temperature coincides with
the spring melt (Plate 11), accurate predictions of runoff are feasible.

Improvements in the modeled variables through use of NCEP forecasts
are readily apparent from the last three graphs of the right column in Plate
11. During the spring melt period, errors in forecasts of snowmelt are low for
the first four days of the forecast cycle because of the high accuracy in fore-
casts of maximum temperature for March, April, and May. Likewise, reduc-
tions in forecast errors of actual ET are evident in late spring. In midsummer,
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5.2 Seasonal cycles of the long-term monthly mean and daily standard deviation
of maximum and minimum temperature and precipitation (inputs to PRMS-
distributed hydrological model; see text) as well as snowmelt, actual evapotrans-
piration (ET), and total runoff (PRMS model outputs) for the Animas basin.
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biases for eight-day forecasts). As a pre-processing step, we removed all sys-
tematic biases before the NCEP forecasts were used in the PRMS hydrologic
modeling system. Biases in maximum and minimum temperatures were re-
moved by computing a monthly climatology of the NCEP temperatures for
each forecast lead time, subtracting the forecast value from that climatology
(to produce a daily anomaly value), and adding the daily anomaly to the
corresponding monthly station climatology of maximum and minimum tem-
perature. Because precipitation data are not normally distributed, correcting
for constant bias over the entire data range is not valid. To circumvent this
problem, we classified the precipitation data by deciles and performed the
bias correction outlined earlier independently for each decile. The bias cor-
rections only apply to systematic biases in the NCEP fields; they do not
account for biases associated with specific weather regimes (e.g., precipita-
tion may be underestimated during the passage of a cold front and overesti-
mated when high pressure is dominant). The bias corrections are possible
only because the NCEP model was held constant throughout the reanalysis
period. In an operational setting the model is frequently upgraded, and such
corrections (as well as more sophisticated statistical procedures such as sta-
tistical downscaling) are not possible.

Surface-Water Hydrology of the Animas River Basin
Monthly variations in the mean and standard deviation of the three

variables used as input to PRMS (maximum and minimum temperatures and
precipitation) and of the three modeled variables (snowmelt, actual evapo-
transpiration [ET], and runoff) are presented in Figure 5.2. Figure 5.2, which
is based on the simulations using station data, describes the influence of
precipitation and temperature on the hydrology of the Animas River basin,
as well as seasonal variations in the hydrologic response of the basin. Tem-
peratures reflect the midlatitude, continental location of the region. Mean
maximum temperatures are close to 0°C from November to March, and mini-
mum temperatures are below freezing most of the year. Temperatures rise
significantly in summer months, when mean basin-average maximum tem-
peratures are close to 20°C. Both minimum and maximum temperatures are
most variable in winter months. Precipitation is relatively constant across
seasons but tends to be low in early summer and high during autumn. Most
winter precipitation falls as snow and is stored in the snowpack until spring.
Modeled snowmelt is highest and most variable in April, May, and June.
Although temperatures are generally too low for melt to occur in midwinter,
a secondary melt occurs in October and November when snow cover is tran-
sient. Actual ET is highest throughout the summer, especially in May and
June, when the amount of soil moisture is high. The seasonal cycle of runoff
is similar to that of snowmelt, illustrating the importance of snow for the
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however, NCEP forecasts of ET are less accurate than forecasts of ET based
on climatology. This is consistent with the poor forecast accuracy for maxi-
mum temperature at this time of year. In terms of runoff, reductions in fore-
cast errors during the spring melt period are remarkable. Forecast errors at
the end of the forecast period (seven to eight days) are almost halved when
the hydrologic model is forced with the NCEP output. Forecast accuracy for
runoff at such long lead times exceeds the forecast accuracy for maximum
temperature and snowmelt because of the natural lags and integrating effects
of hydrologic systems.

Summary and Discussion
The NCEP atmospheric model, when coupled with the PRMS-distributed

hydrologic model, provides forecasts of runoff with errors much lower than
those of hydrologic forecasts based on climatology. In addition, accuracy of
runoff forecasts is evident at longer lead times (about four days) than for the
forecasts of maximum temperature and snowmelt because of the natural lags
and integrating effects of hydrologic systems, particularly with regard to
subsurface flow. Greater accuracy at longer lead times underscores the im-
portance of specifying initial conditions accurately over the basin at the
start of the forecast period. Although we do not currently assimilate satel-
lite data into the hydrologic modeling, we anticipate that in the future
satellite data will provide more accurate estimates of initial conditions for
hydrologic forecasts.

The accuracy of runoff forecasts in this study is possible because the
hydrology of the Animas River basin is dominated by snowmelt, which is
influenced predominantly by temperature. In other river basins where the
hydrology is more heavily influenced by rainfall, the accuracy of precipita-
tion forecasts will be more important. Because the precipitation forecasts
from global-scale models are rather poor (particularly on the small spatial
scales used in hydrologic applications), use of raw, global-scale forecasts is
unlikely to provide reliable forecasts of runoff for rainfall-dominated hydro-
logic systems. In the Animas River basin, skillful predictions of maximum
temperature happen to coincide with the timing of snowmelt. Predictions of
maximum and minimum temperatures do not improve upon climatology
during summer, and predictions of maximum temperature are little better
than climatology in winter.

Because some of the largest forecast errors can be attributed to the coarse
horizontal resolution of the NCEP model, it may be prudent to explore
methods that resolve subgrid-scale information in the forecast fields by sta-
tistical downscaling through the use of Model Output Statistics (MOS; Wilks
1995; Wilby et al. 1999). MOS is based on empirical relations between fea-
tures reliably simulated as global-scale forecast models at grid-box scales (e.g.,
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500 hectoPascals [hPa] geopotential height) and surface characteristics at
subgrid scales (e.g., occurrence and amount of precipitation). An alternative
approach is through dynamical downscaling, whereby a dynamically based
regional-scale climate model is nested within the global-scale forecast model.
Although the computational requirements of such an approach are demand-
ing, rapid increase in computer power over the past decade has allowed re-
gional climate models to become a major tool in short-term numerical weather
prediction. Comparisons of ten years of dynamically downscaled NCEP out-
put from the RegCM2 regional climate model run at a horizontal resolution
of 50 km, and statistically downscaled NCEP output using MOS for simulat-
ing the surface hydrology of the Animas River basin shows that the statisti-
cal approach performs slightly better than the dynamical approach (Wilby et
al. 2000) or the raw NCEP output. Because precipitation and temperature
variations often occur on spatial scales much smaller than 50 km, however,
it may be premature to rule out the utility of regional climate models. It is
likely that nesting a series of regional climate models to scales of less than a
square kilometer is necessary to resolve adequately the subgrid-scale varia-
tions important for hydrologic modeling.

SEASONAL HYDROLOGIC FORECASTS
At seasonal timescales, predictive skill can be derived from knowledge of
ways in which the slowly varying components of the climate system (e.g.,
tropical sea-surface temperatures, continental soil moisture, and albedo) al-
ter the probability of extremes in precipitation and temperature. In the snow-
fed river systems of the western United States, many water-management
decisions are based solely on the amount of water stored in the seasonal
snowpack at various times during the accumulation season, whereas rela-
tively little attention is paid to mechanisms by which low-frequency climate
variations may influence patterns of snow accumulation. One of the most
widely studied low-frequency variations in the climate system is the El Niño–
Southern Oscillation (ENSO). Here we focus on the Columbia and Colo-
rado River basins and show how El Niño and La Niña events modulate the
seasonal evolution of the montane snowpack in these basins.

Effects of ENSO on Western Water Resources
The El Niño–Southern Oscillation describes quasi-periodic variations

in sea-surface temperature (SST) of the tropical Pacific Ocean and associated
pressure oscillations between Tahiti and Darwin, Australia (Rasmusson and
Wallace 1983; Chapter 1). El Niño (warm) events are characterized by above-
normal SSTs in the eastern tropical Pacific Ocean and increased convection
and precipitation near and east of the International Dateline. During La
Niña (cold) events, SST anomalies generally oppose those of El Niño events,
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Table 5.1—Years ranked in terms of the magnitude of the Niño 3.4 index (area-averaged SST over
the region 120°W–170°W, 5°S–5°N) and the Southern Oscillation Index (sea-level pressure
difference between Tahiti and Darwin). The SOI was multiplied by –1, which makes it ordinally
consistent with the Niño 3.4 index. The years are defined as the date at the end of winter (i.e., the
winter of 1982–1983 is taken as 1983).

Index Index Index Index Index Index
Rank NINO3.4 SOI Rank NINO3.4 SOI Rank NINO3.4 SOI

1 1989 1974 17 1963 1957 32 1978 1959
2 1974 1971 18 1962 1984 33 1980 1981
3 1971 1989 19 1981 1961 34 1952 1994
4 1976 1976 20 1961 1968 35 1964 1969
5 1956 1956 21 1957 1986 36 1977 1995
6 1985 1951 22 1960 1954 37 1988 1973
7 1955 1967 23 1990 1979 38 1970 1952
8 1996 1962 24 1982 1977 39 1995 1990
9 1951 1963 25 1979 1965 40 1969 1958

10 1984 1960 26 1994 1964 41 1966 1966
11 1975 1955 27 1954 1988 42 1987 1993
12 1968 1975 28 1953 1991 43 1973 1978
13 1965 1982 29 1991 1970 44 1958 1987
14 1986 1985 30 1993 1980 45 1992 1992
15 1967 1972 31 1959 1953 46 1983 1983
16 1972 1996

Southern Oscillation Index for the Niño 3.4 index (Table 5.1) and by vary-
ing the number of years designated as El Niño or La Niña events.

Computing Basinwide Estimates of SWE
Basinwide estimates of SWE were computed for each of the major

subbasins in the Columbia and Colorado watersheds. This was done using
snowcourse measurements taken on or near February 1, March 1, April 1,
and May 1 for all years between 1951 and 1996. Snowcourses were assigned
to drainage basins by use of hydrologic unit codes (Seaber et al. 1987). For
the Columbia River, the relevant subbasins within the United States are the
upper Columbia and Yakima, Pend Oreille and Kootenai, Snake River, and
lower Columbia (Figure 5.3). The relevant subbasins in the Colorado River
basin include the upper Green; the Colorado headwaters, the White River,
and the Yampa; the lower Green and Lake Powell; the San Juan, Gunnison,
and Dolores Rivers; and the lower Colorado (Figure 5.3). Descriptions of
these basins are provided in Table 5.2.

ENSO-SWE Associations for the Columbia River Basin
Composite anomalies and inter-ENSO variability in SWE for the subbasins

in the Columbia River are illustrated in Figure 5.4. The bars represent the
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maintained by the United States Department of Agriculture’s cooperative
snow survey program. The program is coordinated by the Natural Resources
Conservation Service, which has partners conducting measurements in Ari-
zona, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Wash-
ington, and Wyoming. In addition, the California Department of Water
Resources has an independent program. The number of snowcourse loca-
tions grew from fewer than 10 in the 1910s to almost 2,000 in the 1970s.
Snowcourse measurements decreased in the 1980s and 1990s as a result of
the development of the automated Snowpack Telemetry (Snotel) system
(Serreze et al. 1999). SWE is generally measured on or about the beginning
of each month from January through June. Additional measurements may
be taken in the middle of the month if knowledge of snowpack conditions is
deemed critical. Snowcourse measurements are most frequently taken at the
beginning of April, which is the peak for SWE in much of the West. The
frequency and timing of measurements vary considerably with the locality,
the nature of the snowpack, difficulty of access, and cost (NRCS 1988).

Snow depth and SWE are measured by pushing a tube through the snow-
pack to the ground surface and extracting a core. SWE is determined by
weighing the tube with its snow core and subtracting the weight of the
empty tube. Between five and ten cores are taken at regular intervals along
each snowcourse site. An average of all samples for a site is the SWE value
for that site. Generally, courses are about 300 m long and are situated in
small meadows protected from the wind (NRCS 1988). Possible problems
with snowcourse measurements include changes in vegetation, which may
change patterns of snow accumulation along the snowcourse, and errors in
data entry. For present purposes, quality control of the data involves only
removal of obviously impossible cases in which snowpack depth was re-
ported as being less than its water equivalent. The effects of remaining
errors are reduced through our use of basinwide SWE averages (described
later).

Definition of El Niño and La Niña Events
The first step in our analysis is to identify El Niño and La Niña events.

Any such classification is somewhat arbitrary. Our definition is based on
mean winter (November through April) values of the Niño 3.4 index, which
is the average SST anomaly in the central equatorial Pacific Ocean (5°N–
5°S; 120°W–170°W), where tropical convection is most sensitive to SST
variations (Hoerling et al. 1997; Trenberth 1997). Each year over the period
1951–1996 was ranked in terms of the mean wintertime anomaly value (Table
5.1). The ten warmest and ten coldest years were extracted for analysis. At-
tention is restricted to years after 1951, as the SST data for earlier years are
somewhat unreliable. Sensitivity tests were conducted by substituting the
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but the negative anomalies in tropical convection and precipitation are of
small magnitude and do not extend as far east as the positive anomalies of El
Niño (Hoerling et al. 1997). The tropical anomalies perturb midlatitude
atmospheric circulation patterns. During warm events, enhanced tropical
convection results in intensification of the Hadley circulation and a strength-
ening and eastward extension of the Pacific subtropical jet. This is associated
with a deepening of the Aleutian Low in the North Pacific Ocean and am-
plification of the northern branch of the tropospheric wave train over North
America, resulting in a characteristic “split flow” (e.g., Bjerknes 1969; Horel
and Wallace 1981; Rasmusson and Wallace 1983). The midlatitude response
to cold events generally involves weakening of the subtropical jet and damp-
ing of the wave train over North America. Because of the lack of symmetry
in tropical convection patterns between warm and cold events, however,
sea-level pressure and anomalies at 500 hPa height during warm events are
shifted, on average, 35° east of those in cold events (Hoerling et al. 1997).

In an analysis of hydrologic effects of ENSO over the western United
States, Cayan and Webb (1992) computed correlations between the South-
ern Oscillation Index (SOI)—a simple measure of the phase and strength of
ENSO—and April 1 snow-water equivalent (SWE) and between the SOI
and annual runoff. They showed that SWE and annual runoff are positively
correlated with the SOI in the northwestern United States but are nega-
tively correlated with the SOI in the southwestern United States. This sug-
gests that El Niño events lead to decreased SWE and annual runoff in the
Northwest and to increased SWE and annual runoff in the Southwest and
that La Niña events have the opposite effects. Other studies provide similar
findings (Cayan and Peterson 1990; Koch et al. 1991; Redmond and Koch
1991; Cayan 1996). In El Niño years the amplified northern branch of the
wave train over North America is associated with higher temperatures over
the northwestern United States and Canada and a northward shift of the
storm track toward Alaska, which decreases mean precipitation over the
Pacific Northwest. To the south, the strengthened subtropical jet entrains
more moisture from the Pacific Ocean, which, when combined with the
increased cyclonic shear on the jet’s poleward flank, increases the likelihood
of precipitation over the southwestern United States. In La Niña years the
stronger zonal flow allows more storm systems to penetrate into the north-
western United States, resulting in increased precipitation over this area.
Over the southwestern United States, the weakened subtropical jet decreases
the likelihood of precipitation.

Data
We base our analysis on SWE data collected manually on a monthly

basis during winter and spring at several hundred permanent snowcourses
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Table 5.2—Description of subbasins selected for this study (from Seaber et al. 1987).

COLUMBIA RIVER BASIN
UPPER COLUMBIA AND YAKIMA

Subregion 1702: Columbia River basin within the United States above the confluence with
Snake River basin, excluding Yakima River basin

Subregion 1703: Yakima River basin

PEND OREILLE AND KOOTENAI

Subregion 1701: Kootenai, Pend Oreille, and Spokane River basins within the United States

SNAKE

Subregion 1704: Upper Snake: Snake River basin to and including Clover Creek basin
Subregion 1705: Middle Snake: Snake River basin below Clover Creek basin to Hells Canyon

Dam
Subregion 1706: Lower Snake: Snake River basin below Hells Canyon Dam to its confluence

with the Columbia

LOWER COLUMBIA

Subregion 1707: Middle Columbia: Columbia River basin below the confluence with Snake
River basin to Bonneville Dam

Subregion 1708: Lower Columbia: Columbia River basin below Bonneville Dam, excluding
Willamette basin

COLORADO RIVER BASIN
COLORADO HEADWATERS AND THE WHITE AND YAMPA

Subregion 1401: Colorado Headwaters: Colorado River basin to but excluding Bitter Creek
basin and excluding Gunnison River basin

Subregion 1405: White and Yampa River basins

UPPER GREEN

Subregion 1404: Great Divide–Upper Green: Green River basin above the confluence with
Yampa River basin, and Great Divide closed basin

LOWER GREEN AND LAKE POWELL

Subregion 1406: Lower Green: Green River basin below the confluence with Yampa River
basin but excluding Yampa and White River basins

Subregion 1407: Upper Colorado–Dirty Devil: Colorado River basin below the confluence
with Green River basin to Lees Ferry compact point but excluding San Juan River basin

GUNNISON/DOLORES/SAN JUAN

Subregion 1402: Gunnison: Gunnison River basin
Subregion 1403: Upper Colorado–Dolores: Colorado River basin from and including Bitter

Creek basin to the confluence with Green River basin
Subregion 1408: San Juan: San Juan River basin

LOWER COLORADO

Subregion 1502: Little Colorado River basin
Subregion 1504: Upper Gila: Gila River basin above Coolidge Dam, including Animas Valley

closed basin
Subregion 1506: Salt River basin
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5.5 Anomalous SWE (expressed as a percentage of the mean) in El Niño and La
Niña years for major subbasins in the Colorado River basin. The bars represent
the mean of the ten strongest El Niño or La Niña years (based on the Niño 3.4
index; Table 5.1), and the diamonds represent the ten years used to compute
the means. The April 1 SWE anomaly in the lower Colorado during the 1972–
1973 El Niño event is off the scale at 216 percent of the mean (not plotted). The
numbers at the bottom of each plot indicate the statistical significance of devia-
tions as determined by a 1,000-member Monte Carlo simulation.
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composite mean anomaly of the ten strongest El Niño and La Niña years
(Table 5.1), and the diamonds represent the anomaly values of the indi-
vidual composite members. Significance levels (in percentage) obtained from
a 1,000-member Monte Carlo simulation are displayed at the bottom of each
plot. Consistent with previous work (e.g., Cayan and Webb 1992), there is a
general tendency for decreased SWE during El Niño years and increased
SWE in La Niña years. In the broadest sense, these signals reflect displace-
ment of the storm track by ENSO events.

Some nonlinearities are found in the association of SWE with ENSO
events. In El Niño years the snowpack is very close to normal at the begin-
ning of February, and decreases in SWE at the accumulation season are not
significant at the 95 percent confidence level (Figure 5.4). Livezey et al.
(1997) illustrate that although precipitation in the Pacific Northwest under
El Niño conditions is below normal in October, November, February, and
March, it is actually above normal in December and January, when increases
in precipitation occur in conjunction with a midwinter eastward shift of the
tropospheric wave train (Hoerling and Kumar 2000). Since most snow in the
Pacific Northwest mountains falls in midwinter (Serreze et al. 1999), in-
crease of precipitation in December and January largely cancels the effects of
decreased precipitation in other months.

In comparison to the weak SWE signals during El Niño years, increases
in SWE during La Niña years are relatively strong (often above the 95%
confidence level). Stronger zonal flow over western North America under La
Niña conditions steers more storm systems over the Pacific Northwest, in-
creasing precipitation there. These increases occur throughout the winter
and are particularly marked in November, December, January, and March
(Livezey et al. 1997). The stronger signals in La Niña years as compared with
El Niño years are consistent with the lack of symmetry in upper tropospheric
circulation patterns between the extreme phases of ENSO, as mentioned
previously.

ENSO-SWE Associations for the Colorado River Basin
In El Niño years, mean changes in the seasonal snowpack of the Colo-

rado River basin (Figure 5.5) show a transition between drier-than-average
conditions in the north (best expressed in the upper Green) and wetter-
than-average conditions in the southwest (best expressed in the lower Colo-
rado). Broadly opposing patterns of La Niña years are consistent with results
from previous work (e.g., Cayan and Webb 1992). Signals in the upper Green
(Figure 5.5) are consistent with those of the Columbia River basin (Figure
5.4), where decreases in SWE during El Niño years reflect the amplified
tropospheric wave train and associated decreases in precipitation; opposite
patterns appear with La Niña. In the lower Colorado basin the significant
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5.4 Anomalous snow-water equivalent (SWE) (expressed as a percentage of the
mean) in El Niño and La Niña years for major subbasins in the Columbia River
basin. The bars represent the mean of the ten strongest El Niño or La Niña
years (based on the Niño 3.4 index; Table 5.1), and the diamonds represent the
ten years used to compute the means. The numbers at the bottom of each plot
indicate the statistical significance of deviations as determined by a 1,000-mem-
ber Monte Carlo simulation.
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increases in SWE in El Niño years occur in part because of the changes in
precipitation associated with a strengthening of the subtropical jet; La Niña
causes the reverse.

An interesting feature of Figure 5.5 is that the SWE anomalies in the
lower Colorado basin increase in magnitude over the winter and tend to be
much more pronounced on April 1 than on March 1. Because the mean date
of maximum SWE in this region is typically near February 20 (Serreze et al.
1999), these signals reflect a prolonged accumulation season during El Niño
years and early melt during La Niña years. Evidence indicates similar sea-
sonal changes in the Colorado headwaters, the lower Green, and the San
Juan River basins, but these signals are much more subdued (Figure 5.5).
Sensitivity tests (not shown) demonstrate that although the signals in the
lower Colorado are fairly robust, the signals in the Colorado headwaters, the
lower Green, and the San Juan are sensitive to both the number of years
included in the El Niño and La Niña composites and the type of index used.

DISCUSSION
Effects of ENSO on snowpack, and thus on water resources, over the Colum-
bia River basin differ from the effects of ENSO farther south in the Colorado
River basin. Over the Columbia River basin SWE generally tends to be low
during El Niño years and high in La Niña years, but the trend for El Niño
years is much less pronounced. Over the Colorado River basin there is a
north-south transition in the effect of ENSO. Mean SWE during El Niño
years is lower than average in the north and higher than average in the south-
west. During La Niña years the signal is reversed. Over the lower Colorado,
precipitation and SWE anomalies tend to be more pronounced in spring, when
the ENSO variations have the strongest influence on regional precipitation.

Our study suggests that information on ENSO may be used to enhance
seasonal hydrologic predictions in subbasins of the Columbia and Colorado
River systems. In some river basins ENSO signals are weak and by them-
selves will provide little benefit to seasonal runoff forecasts. Our analysis
shows, however, that in many instances the change in ENSO signal throughout
the accumulation season is often greater than the mean ENSO signal at the
end of that season. For example, SWE is high in the Colorado headwaters
basin on February 1 in La Niña years but is much less so (and not significant
even at the 90% level) on April 1. Because on average over two-thirds of the
snowpack has accumulated by the beginning of February (Serreze et al. 1999),
monitoring the water equivalent of the snowpack throughout the accumula-
tion season and combining this information with knowledge of seasonal
changes in the ENSO signal may improve predictions of water supply.

Variations in Tropical Pacific SSTs are not the only slowly varying com-
ponent of the atmosphere-land-ocean system that may improve prediction
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of seasonal climate. Other low-frequency variations may be important, such
as variations in midlatitude sea-surface temperature and continental-scale
variations in land-surface snow mass, land-surface albedo, and soil moisture.
For example, Gutzler and Preston (1997) show that large-scale variations in
snow mass over the western United States have a significant relationship to
spring and summer precipitation over New Mexico. The hypothesized mecha-
nism, which is similar to that invoked for snow-monsoon relationships over
Eurasia, is that the energy required to melt above-average snow mass and
evaporate the associated higher amounts of soil moisture causes a delay in
seasonal warming of the landmass. This modulates the land-ocean tempera-
ture contrast and the summer monsoonal circulation over the southwestern
United States. Expansion of seasonal climate forecasts to include these addi-
tional influences may result in improved hydrologic predictions on seasonal
timescales.

SUMMARY AND CONCLUSIONS
This chapter explores the utility of weather and climate information for
improving intraseasonal and seasonal hydrologic predictions. We demon-
strate for the Animas River in Colorado that atmospheric forecasts provide
predictions of runoff with lower forecast errors than those obtained by cur-
rent practice, which uses historical station data to characterize expected
future weather. Because the surface hydrology of the Animas basin is domi-
nated by snowmelt, variations in temperature are much more important than
variations in precipitation for short-term runoff forecasts. Temperature fore-
casts are more reliable than precipitation forecasts, thereby lending enhanced
accuracy to hydrologic forecasts that use output from numerical weather
prediction models. In rainfall-dominated river basins, however, raw, global-
scale atmospheric forecasts may be of little benefit; improvements in fore-
cast skill may be realized only through statistical or dynamical downscaling
methodologies.

For seasonal hydrologic forecasts, El Niño and La Niña events signifi-
cantly modulate the seasonal snowpack evolution in many major subbasins
of the Columbia and Colorado River systems. In the Columbia River basin
the general tendency is for decreased SWE during El Niño years and in-
creased SWE in La Niña years, but changes during La Niña years are much
more pronounced. Over the Colorado River basin, drier-than-average condi-
tions occur in the north and wetter-than-average conditions occur in the
southwest during El Niño, and opposite trends occur during La Niña. Over
the lower Colorado basin, SWE anomalies tend to be larger in spring, when
the El Niño and La Niña events have the strongest influence on regional
precipitation. The analysis suggests that ENSO information may be useful for
improving seasonal hydrologic predictions in many subbasins of the Columbia
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and Colorado River systems. In some basins the ENSO signals are weak and by
themselves provide little benefit for seasonal runoff forecasts. In many instances,
however, the change in ENSO signal during the accumulation season is greater
than the mean ENSO signal at the end of that season. Therefore, monitor-
ing the water equivalent of the snowpack during the accumulation season
and combining this information with knowledge of seasonal changes in the
ENSO signal may provide improved predictions of water supply.
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