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While efforts to predict natural phenomena have be-
come an important aspect of the Earth sciences, the value
of such efforts, as judged especially by their capacity to
improve decision making and achieve policy goals, has
been questioned by a number of constructive critics. The
relationship between prediction and policy making is
not straightforward for many reasons. In practice, con-
solidative and exploratory models are often confused
by both scientists and policy-makers alike, thus a cen-
tral challenge facing the community is the appropriate
use of such models and resulting predictions (Sarewitz
and Pielke 1999).

Among the reasons for this criticism is that accurate
prediction of phenomena may not be necessary to re-
spond effectively to political or socio-economic problems
created by such phenomena (for example, see Pielke et al.
1999). Indeed, phenomena or processes of direct concern
to policy-makers may not be easily predictable or useful.
Likewise, predictive research may reflect discipline-spe-
cific scientific perspectives that do not provide “answers”
to policy problems since these may be complex mixtures
of facts and values, and which are perceived differently
by different policy-makers (for example, see Jamieson
and Herrieck 1995).

In addition, necessary political action may be deferred
in anticipation of predictive information that is not forth-
coming in a time frame compatible with such action.
Similarly, policy action may be delayed when scientific
uncertainties associated with predictions become politi-
cally charged as in the issue of global climate change, for
example (Rayner and Malone 1997).

Predictive information may also be subject to manip-
ulation and misuse, either because the limitations and
uncertainties associated with predictive models are not
readily apparent or because the models are applied in a
climate of political controversy and high economic
stakes. In addition, emphasis on predictive sciences
moves both financial and intellectual resources away
from other types of research that might better help to
guide decision making as, for example, incremental or
adaptive approaches to environmental management that
require monitoring and assessment instead of predic-
tion (see Lee and Black 1993).

These considerations suggest that the usefulness of
scientific prediction for policy making and the reso-
lution of societal problems depends on relationships
among several variables, such as the timescales under
consideration, the scientific complexity of the phenom-
ena being predicted, the political and economic context
of the problem, and the availability of alternative scien-
tific and political approaches to the problem.

In light of the likelihood of complex interplay among
these variables, decision makers and scientists would
benefit from criteria that would allow them to judge the
potential value of scientific prediction and predictive
modelling for different types of political and social prob-
lems related to Earth processes and the environment.

Pielke et al. (1999) provide the following six guidelines
for the effective use of prediction in decision making.

1. Predictions must be generated primarily with the
needs of the user in mind. For stakeholders to par-
ticipate usefully in this process, they must work closely
and persistently with the scientists to communicate
their needs and problems.

2. Uncertainties must be clearly articulated (and under-
stood) by the scientists, so that users understand their
implications. Failure to understand uncertainties has
contributed to poor decisions that then undermine
relations among scientists and decision makers. But
merely understanding the uncertainties does not
mean that the predictions will be useful. If policy-
makers truly understood the uncertainties associated
with predictions of, for example, global climate
change, they might decide that strategies for action
should not depend on predictions (Rayner and Ma-
lone 1997).

3. Experience is an important factor in how decision
makers understand and use predictions.

4. Although experience is important and cannot be re-
placed, the prediction process can be facilitated in
other ways, for example by fully considering alterna-
tive approaches to prediction, such as “no-regrets”
public policies, adaptation, and better planning and
engineering. Indeed, alternatives to prediction must
be evaluated as a part of the prediction process.
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5. To ensure an open prediction process, stakeholders
must question predictions. For this questioning to be
effective, predictions should be as transparent as
possible to the user. In particular, assumptions, model
limitations, and weaknesses in input data should be
forthrightly discussed. Even so, lack of experience
means that many types of predictions will never be
well understood by decision makers.

6. Last, predictions themselves are events that cause im-
pacts on society. The prediction process must include
mechanisms for the various stakeholders to fully con-
sider and plan what to do after a prediction is made.

Scenarios of the future such as projections of climate
change, forest production, animal migration, or disease
spread are – by definition – subsets of all possible out-
comes (Cohen 1996). Most projections have much in
common with the typical five-day weather forecast on
the nightly news:

� they are based on data from the recent past;
� they incorporate relatively few response variables (e.g.

temperature and precipitation);
� they are more accurate for some response variables

than others (i.e. minimum temperature versus preci-
pitation amounts);

� no level of certainty or probability is provided or im-
plied;

� short-term projections are typically more accurate
than long-term projections; and

� their use for planning is limited to a narrowly de-
fined set of questions (e.g. should snow ploughs be
positioned near highways in anticipation of a snow-
storm; Sarewitz et al. 2000).

Seasonal forecasts, such as those predicting greater
or less precipitation over the next few months, are based
on larger-scale phenomena such as ocean temperatures
and jet stream patterns, but have additional limitations
and uncertainties about the spatial and temporal accu-
racy of the projections (Glantz 2001).

There is more uncertainty behind long-term climate
change scenarios with 30- to 100-year timeframes com-
pared to seasonal forecasts. Long-term climate scenarios
have considerably more limitations and higher levels of
uncertainty due to coarse-scale spatial resolution, natu-
ral spatial and temporal variation, insufficient under-
standing of multiple climate forcings, longer-term bio-
logical physical feedbacks in the models, and lack of sto-
chastic extreme events. Globally averaged results would
be expected to be more reliable than local and regional
results. Reliance on scenarios is reliance on predictions
with all their limitations and uncertainties (Sarewitz
et al. 2000).

The value of predictions for environmental decision-
making therefore emerges from the complex dynamics

of the prediction process, and not simply from the tech-
nical efforts that generate the prediction product (which
are themselves an integral part of the prediction proc-
ess).

An alternative to the scenario-prediction approach
is to evaluate vulnerability based on a more comprehen-
sive assessment of multiple stresses, multiple response
variables, and their interactions. For example, natural
ecosystems are often affected by multiple stresses in-
cluding land-use change, loss of biodiversity, altered
disturbance regimes, invasive non-indigenous species,
pollution, and rapid climate change (Stohlgren 1999b).
Land managers are concerned about many natural and
cultural resources, local economies, and stakeholder
concerns for specific resources. The interactions of the
multiple stresses and response variables are important
and urgent considerations. A warming climate, for ex-
ample, might alter the competitive advantage of exotic
annual grasses only if nitrogen from air pollution were
available, grazing were limited, and forest canopies re-
mained fairly open. The effects of decreased precipita-
tion on aquatic biota might be more of a problem where
water was over-subscribed, low flows were adversely af-
fected by water diversion, and exotic fish inhabited the
streams. Human-dominated and natural ecosystems,
and their interacting components and processes, can
rarely be assessed by evaluating stresses independently.
It is often possible, however, to identify vulnerabilities
or sensitivities in cases where prediction is impractical
or impossible.

Vulnerability assessments, of course, also have limi-
tations. Detailed information on stresses, resources, and
interactions is often scant, resulting in increased uncer-
tainty. In general, the level of uncertainty is constrained
by focusing on short-term planning horizons and high
priority issues at local and regional scales. However, a
vulnerability assessment is easily made consistent with
the needs of decision makers. It is not a new concept,
and is variously referred to in the literature as “adaptive
management”, “vulnerability assessment”, “boundedly
rational decision making”, and “successive incremental
approximations”.

An important first step in considering the implica-
tions for research and policy is to recognise the role of
models and predictions for purposes of both science and
action. Bankes (1993) defines two types of models, con-
solidative and exploratory, differentiated by their uses.

� A consolidative model seeks to include all relevant
facts into a single package and use the resulting sys-
tem as a surrogate for the actual system.

The canonical example is that of the controlled labo-
ratory experiment (Sarewitz and Pielke 1999). Other ex-
amples, include weather forecast and engineering design
models. Such models are particularly relevant to deci-
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sion making because the system being modelled can be
treated as being closed, i.e. one “in which all the compo-
nents of the system are established independently and
are known to be correct” (Oreskes et al. 1994). The crea-
tion of such a model generally follows two phases: first,
model construction and evaluation and second, opera-
tional usage of a final product. Such models can be used
to investigate diagnostics (i.e. “what happened?”), proc-
ess (“why did it happen?”), or prediction (“what will hap-
pen?”).

� An exploratory model – or what Bankes (1993) calls a
“prosthesis for the intellect” – is one in which all com-
ponents of the system being modelled are not estab-
lished independently or are not known to be correct.

In such a case, the model allows for computational
experiments to investigate the consequences for mod-
elled outcomes of various assumptions, hypotheses, and
uncertainties associated with the creation of and inputs
to the model. These experiments can contribute to at least
three important functions (Bankes 1993). First, they can
shed light on the existence of unexpected properties as-
sociated with the interaction of basic assumptions and
processes (e.g. complexity or surprises). Second, in cases
where explanatory knowledge is lacking, exploratory
models can facilitate hypothesis generation. Third, the
model can be used to identify limiting, worst-case, or
special scenarios under various assumptions of and un-
certainty associated with the model experiment. The lim-
iting “worst cases” generated in such a model are explo-
rations of the boundaries of the universe of model out-
puts, and may or may not have significance for under-
standings of the real world. Frequently consolidative and
exploratory models are confused in this regard. Such ex-
periments can be motivated by observational data (e.g.
econometric and hydrological models), scientific hypoth-
eses (e.g. general circulation models), or by a desire to
understand the properties of the model or class of mod-
els independent of real-world data or hypotheses.

� A shift in the culture of research is also needed. Re-
search must be truly interdisciplinary (rather than
multidisciplinary).

Assessing multiple stresses requires a broad spectrum
of expertise without losing sight of the complex inter-
actions among the sciences. Scientists must also learn
to work interactively with stakeholders so that the high-
est priority needs are met first. To date, climate change
research has been heavily focused at the global-scale
and longer timeframes, as evidenced by the reliance on
GCMs, projected changes in mean temperature and pre-
cipitation, and 100-year or double-CO2 model time-
frames. There is often a huge “disconnect” with local and
regional stakeholders who have demanded a greater

emphasis on near-future responses associated with ex-
treme events, information on a full range of climate char-
acteristics, and interactions from multiple environmen-
tal stresses that they deal with on a daily basis.

This suggests a rebalancing of priorities towards ad-
aptation and vulnerability/sensitivity assessments; away
from consolidative modelling and toward more explora-
tory efforts. Such research has the potential to contrib-
ute to a range of important societal needs.

When the prediction process is fostered by effective,
participatory institutions, and when a healthy decision
environment emerges from these institutions, the prod-
ucts of predictive science may even become less impor-
tant. Earthquake prediction was once a policy priority;
now it is considered technically infeasible, at least in the
near future. However, in California the close, institution-
alised communication among scientists, engineers, state
and local officials, and the private sector has led to con-
siderable advances in earthquake preparedness and a
much decreased dependence on prediction. On the other
hand, in the absence of an integrated and open decision
environment, the scientific merit of predictions can be
rendered politically irrelevant, as has been seen with nu-
clear waste disposal and acid rain. In short, if no ad-
equate decision environment exists for dealing with an
event or situation, a scientifically successful prediction
may be no more useful than an unsuccessful one.

� These recommendations fly in the face of much cur-
rent practice where, typically, policy-makers recog-
nise a problem, scientists then go away and do re-
search to predict natural behaviour associated with
the problem, and predictions are finally delivered to
decision makers with the expectation that they will
be both useful and well used. This sequence, which
isolates prediction research but makes policy depend-
ent on it, rarely functions well in practice.

E.3.1 Societal Needs

Recently, Lins and Slack (1999) published a paper show-
ing that in the United States in the 20th century, there
have been no significant trends up or down in the high-
est levels of streamflow. This follows a series of papers
showing that over the same period “extreme” precipita-
tion in the United States has increased (e.g. Karl and
Knight 1998a; Karl et al. 1995).

The differences in the two sets of findings have led
some to suggest the existence of an apparent paradox:
How can it be that on a national scale extreme rainfall is
increasing while peak streamflow is not? Resolving the
paradox is important for policy debate because the im-
pacts of an enhanced hydrological cycle are an area of
speculation under the Intergovernmental Panel on Cli-
mate Change (IPCC 1996).

E.3.1  ·  Societal Needs
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There does exist some question as to whether com-
paring the two sets of findings is appropriate. Karl and
Knight (1998b) note that “As yet, there does not appear
to be a good phys-ical explanation as to how peak flows
could show no change (other than a sampling bias), given
that there has been an across-the-board increase in ex-
treme precipitation for 1- to 7-day extreme and heavy
precipitation events, mean streamflows, and total and
annual precipitation. ”

Karl’s reference to a sampling bias arises because of
the differences in the areal coverage of the Lins and Slack
study and those led by Karl. Lins and Slack (1999) focus
on streamflow in basins that are “climate sensitive” (Slack
and Landwehr 1992). Karl suggests that these basins are
not uniformly distributed over the United States, lead-
ing to questions of the validity of the Lins and Slack find-
ings on a national scale (T. Karl 1999, pers. comn.). While
further research is clearly needed to understand the con-
nections between precipitation and streamflow, a study
by Pielke and Downton (2000) on the relationship of pre-
cipitation and flood damages suggests that the relation-
ship between precipitation and flood damages provides
information that is useful in developing relevant hypoth-
eses and placing the precipitation-streamflow debate into
a broader policy context (cf. Changnon 1998).

Pielke and Downton (2000) offer an analysis that
helps to address the apparent paradox. They relate trends
in various measures of precipitation with trends in flood
damage in the United States. The study finds that the
increase in precipitation (however measured) is insuf-
ficient to explain increasing flood damages or variabil-
ity in flood damages. The study strongly suggests that
societal factors – growth in population and wealth – are
partly responsible for the observed trend in flood dam-
ages. The analysis shows that a relatively small fraction
of the increase in damages can be associated with the
small increasing trends in precipitation. Indeed, after
adjusting damages for the change in national wealth,
there is no significant trend in damages. This would tend
to support the assertion by Lins and Slack (1999) that
increasing precipitation is not inconsistent with an ab-
sence of upward trends in extreme streamflow. In other
words, there is no paradox. As they write, “We suspect
that our streamflow findings are consistent with the pre-
cipitation findings of Karl and his collaborators (1995,
1998). The reported increases in precipitation are mod-
est, although concentrated in the higher quantiles.
Moreover, the trends described for the extreme precipi-
tation category (> 50.4 mm d–1) are not necessarily suf-
ficient to generate an increase in flooding. It would be
useful to know if there are trends in 24-hour precipita-
tion in the > 100 mm and larger categories. The term
“extreme”, in the context of these thresholds, may have
more meaning with respect to changes in flood hydrol-
ogy. ”

Karl et al. (1995) document that the increase in pre-
cipitation occurs mostly in spring, summer, and autumn,
but not in winter. H. Lins (1999, pers. comn.) notes that
peak streamflow is closely connected to winter precipi-
tation and that “precipitation increases in summer and
autumn provide runoff to rivers and streams at the very
time of year when they are most able to carry the water
within their banks. Thus, we see increases in the lower
half of the streamflow distribution. ”

Furthermore, McCabe and Wolock (1997) suggest that
detection of trends in runoff, a determining factor in
streamflow, are more difficult to observe than trends in
precipitation: “the probability of detecting trends in
measured runoff (i.e. streamflow) may be very low, even
if there are real underlying trends in the data such as
trends caused by climate change. ” McCabe and Wolock
focus on detection of trends in mean runoff/streamflow,
so there is some question as to its applicability to peak
flows. If the findings do hold at the higher levels of run-
off-streamflow, then this would provide another reason
why the work of Lins and Slack is not inconsistent with
that of Karl et al., as it would be physically possible that
the two sets of analyses are complementary.

In any case, an analysis of the damage record shows
that at a national level any trends in extreme hydrologi-
cal floods are not large in comparison to the growth in
societal vulnerability. Even so, there is a documented
relationship between precipitation and flood damages,
independent of growth in national population: as pre-
cipitation increases, so does flood damage.

From these results it is possible to argue that inter-
pretations in the policy debate of the various recent stud-
ies of precipitation and streamflow have been mislead-
ing. On the one hand, increasing “extreme” precipita-
tion has not been the most important factor in docu-
mented increases in flood damage. On the other hand,
evidence of a lack of trends in peak flows does not mean
that policy-makers need not worry about increasing pre-
cipitation or future floods. Advocates pushing either line
of argument in the policy arena risk misusing what the
scientific record actually shows. What has thus far been
largely missed in the debate is that the solutions to the
flood problems in the USA lie not only in a better un-
derstanding of the hydrological and atmospheric as-
pects of flooding, but also in a better understanding of
the societal aspects of flood damage (see Pielke and
Downton 2000, for further discussion).

E.3.2 Quantifying Uncertainty Using a
Bayesian Approach

As new information on vulnerability and changes in
the probability distribution of extreme values become
better known, risk estimates should be updated. We
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discuss below a procedure for handling this problem
by using a Bayesian approach to incorporate uncertain-
ty.

Going beyond the consideration of a damaging event
in the definition of hazard, let us consider, for example,
the quantity of interest (from Chapt. E.2) to be δI, which
is defined as the amount of environmental change in
the context of water resources (e.g. amount of water re-
charge to an aquifer; toxic metal content or silting de-
gree of a reservoir). We are interested in the thresholds
of δI beyond which there are undesirable impacts, usu-
ally understood as undesirable effects on the human
well-being. In probabilistic terms the values of interest
are in the tail of the corresponding probability distri-
bution. Since δI is the result of different perturbations
δA, δB, δI

.
 and these perturbations have an inherent un-

certainty associated with each, final uncertainty of δI
will be the result of a combination of uncertainties as
defined by functions f1 and f2 given above, as well as the
inherent uncertainty associated with the validity of these
functions. All these considerations imply that δI is a
highly-dimensional quantity dependent on several pa-
rameters which might also be unknown. In probabilis-
tic terms δI is a random variable in a highly dimensional
space.

Despite these complexities, a vulnerability assessment
of a water resource would be incomplete if a measure of
uncertainty is not given to the event of δI being below
or above a threshold value considered as a potentially
hazardous situation. The reason for this is that policy-
makers are always interested in expected losses and these
need to be quantified in a proper way.

Bayesian statistical methods are becoming increas-
ingly important in evaluating uncertainty related with
environmental change (Adams et al. 1984; Paté-Cornell
1996; Tol and de Vos 1998;Wikle et al. 1998). Given a sta-
tistical model for a variable or a set of variables depend-
ing on a given set of parameters, the Bayesian paradigm
involves three main steps:

1. Consider a prior distribution for the model param-
eters based on prior (as for example subjective infor-
mation by experts) knowledge and before using the
data. When prior information is not available non-
informative (diffuse) priors could be used.

2. Obtain an expression of the joint probability distri-
butions of the observations conditioned on the model
parameters (this is known as the likelihood function
in classical statistics) which implies a proposed sta-
tistical model for the variable of interest.

3. Obtain the posterior probability distribution of the
model parameters by combining prior information
with the likelihood function using the Bayes rule.

This last step can be quite complex since it might in-
volve the definition of a high dimensional joint prob-
ability distribution. However, modern computational
techniques such as Markov chain Monte Carlo methods
(Casella and George 1992) have made possible accurate
representations of the joint posterior distributions of
the parameters of complex statistical models.

The advantages of a Bayesian approach rely on the
possibility of updating the joint posterior distribution
of the model parameters when new information becomes
available (something that is needed in transient risk es-
timation as proposed above). A hierarchical modelling
approach can also be naturally implemented with-in the
Bayesian framework by using the powerful tool of con-
ditioning on the components or parameters of a previ-
ous step of the system. This is specially useful when un-
certainties related to the spatial scale of scenarios need
to be resolved. By adding a downscaling layer to the analy-
sis, under some circumstances (e.g. numerical short-term
weather prediction), it is sometimes possible to deal with
the uncertainty of going from a grid box to a point value
to better represent sub-grid scale variability.

In order to estimate realistic thresholds of δI associ-
ated with environmental perturbations, coherence of
surface variability at the relatively fine space and time
scales is of particular relevance. Since this estimation
should be done in probabilistic terms, calibration of at-
mospheric variability by simply parameterised spatio-
temporal stochastic models has proven to be a very use-
ful tool for rainfall and temperature, as discussed in
Sect. C.4.1. Extension of these methods within the Baye-
sian paradigm (Sansó and Guenni 1999) provide tools
for including the uncertainties discussed above.

A good example of how to incorporate different
sources of uncertainty by using a Bayesian framework
is presented by Krzysztotowicz (1999). He proposes a
Bayesian forecasting system (BFS) by which the total un-
certainty about a hydrological predictant (as river stage,
discharge or runoff volume) is decomposed into input
uncertainty (e.g. time series of precipitation amounts
needed as an input to a hydrological model) and hydro-
logical uncertainty, which considers all sources of un-
certainty beyond random inputs (e.g. model, parameters,
estimation and measurement errors).

Van Noortijk et al. (1997) also use a Bayesian approach
to quantify different sources of uncertainty in the proc-
ess of taking optimal decisions to reduce flood damage
along the Meuse river in the Netherlands (near the Dutch-
Belgian border). Their approach attempts to quantify the
expected economic losses due to flood damage at differ-
ent discharge thresholds. This methodology fits very
nicely with the vulnerability perspective proposed in this
part of the book.

E.3.2  ·  Quantifying Uncertainty Using a Bayesian Approach




