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Abstract

This paper examines the hydrologic model performance in three snowmelt-dominated basins in the western United States

to dynamically- and statistically downscaled output from the National Centers for Environmental Prediction/National

Center for Atmospheric Research Reanalysis (NCEP). Runoff produced using a distributed hydrologic model is compared

using daily precipitation and maximum and minimum temperature timeseries derived from the following sources: (1) NCEP

output (horizontal grid spacing of approximately 210 km); (2) dynamically downscaled (DDS) NCEP output using a

Regional Climate Model (RegCM2, horizontal grid spacing of approximately 52 km); (3) statistically downscaled (SDS)

NCEP output; (4) spatially averaged measured data used to calibrate the hydrologic model (Best-Sta) and (5) spatially

averaged measured data derived from stations located within the area of the RegCM2 model output used for each basin, but

excluding Best-Sta set (All-Sta).

In all three basins the SDS-based simulations of daily runoff were as good as runoff produced using the Best-Sta

timeseries. The NCEP, DDS, and All-Sta timeseries were able to capture the gross aspects of the seasonal cycles of

precipitation and temperature. However, in all three basins, the NCEP-, DDS-, and All-Sta-based simulations of runoff

showed little skill on a daily basis. When the precipitation and temperature biases were corrected in the NCEP, DDS, and

All-Sta timeseries, the accuracy of the daily runoff simulations improved dramatically, but, with the exception of the bias-

corrected All-Sta data set, these simulations were never as accurate as the SDS-based simulations. This need for a bias

correction may be somewhat troubling, but in the case of the large station-timeseries (All-Sta), the bias correction did

indeed ‘correct’ for the change in scale. It is unknown if bias corrections to model output will be valid in a future climate.

Future work is warranted to identify the causes for (and removal of) systematic biases in DDS simulations, and improve

DDS simulations of daily variability in local climate. Until then, SDS based simulations of runoff appear to be the safer

downscaling choice.
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1. Introduction

The climate of most of the western United States

is characterized by semiarid to arid conditions with
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the highest precipitation totals occurring in the

mountainous regions. Between 50 and 70% of the

annual precipitation in these areas falls as snow

(Serreze et al., 1999). Melt of the snowpack in the

spring provides most of the surface water for the

western United States. Water in the western United

States is highly allocated between diverse user groups

and is subject to mounting pressure by the growing

population and changes in institutional practices

(Pulwarty, 1995; Diaz and Anderson, 1995). These

user pressures, coupled with the effects of climatic

variability and potential climatic change, have

stimulated research efforts to develop better water

management tools.

One potential management tool is the use of

atmospheric model output from a global-scale

forecast model such as the National Centers for

Environmental Prediction/National Center for

Atmospheric Research Reanalysis (NCEP) in hydro-

logic models. Given the large systematic biases and

the poor skill present in NCEP precipitation and

temperature estimates in some regions, it is

necessary to explore methods that may improve

upon these global-scale models. Techniques in

widespread use are regional climate modeling

(Dynamical DownScaling—DDS) and statistical

post-processing (Statistical DownScaling—SDS) of

NCEP output (e.g. Wilks, 1995; Wilby et al., 2000;

Antolik, 2000).

DDS techniques use Regional Climate Models

nested within a global-scale model. Regional Climate

Models are run at finer horizontal resolution than the

global-scale models, and thus provide a more accurate

depiction of important model components such as

terrain height and cloud physics. However, Regional

Climate Models suffer from similar bias problems as

the global-scale models (see Takle et al. (1999) and

Hay et al. (2002)), and are overly demanding on

current computer resources.

SDS techniques develop empirical relations

between features reliably simulated in global-scale

models at grid-box scales (e.g. 500 hPa geopotential

height) and surface predictands at sub-grid scales

(e.g. precipitation occurrence and amounts). An

advanced SDS system entered in the 1996–1997

National Collegiate Weather Forecasting Contest

finished better than approximately 97% of the

human forecasters who entered the contest

(Vislocky and Fritsch, 1997). The disadvantage of

SDS is that the SDS equations must be developed

using an archive of forecasts from the same model

that is used in the operational setting. SDS is

ultimately limited by the assumption of temporal

stationarity in the empirical relations (i.e. skillful

SDS results for the present climate do not

necessarily translate to skillful forecasts of future

climate).

The non-stationarity in empirical climate relations

is well documented (e.g. Ramage, 1983). DDS does

not suffer from the non-stationarity shortcomings

present in SDS techniques. Though some parameter-

ization in a Regional Climate Model may have an

empirical basis, DDS simulations of local climate are

more physically based than SDS and thus are more

acceptably transferable from current to future cli-

mates. However, DDS simulations of current climate

have not been extensively tested (Takle et al., 1999).

There is a strong need for a systematic assessment of

current Regional Climate Model output in order to

evaluate the skill of (and confidence in) Regional

Climate Model simulations, especially as drivers for

impact assessment models, and to identify areas for

model improvement.

Wilby et al. (2000) examined the hydrological

response in the Animas River basin of Colorado to

DDS and SDS output from the National Centers for

Environmental Prediction/National Center for

Atmospheric Research (NCEP/NCAR) reanalysis.

They found that in terms of modeling hydrology,

both statistical and dynamical downscaling provided

greater skill than the coarse-resolution data used to

drive the downscaling. The output from the

Regional Climate Model used in the dynamical

downscaling was simulated by RegCM2 (Giorgi

et al., 1988), using the continental US domain and a

grid spacing of 52 km. Despite the higher level of

sophistication and physical realism associated with

DDS, hydrographs simulated using DDS precipi-

tation and temperature were not generally as

accurate as those simulated using SDS precipitation

and temperature.

This paper will compare the hydrologic model

results using precipitation and temperature timeseries

derived from: (1) NCEP output (horizontal grid

spacing of approximately 210 km); (2) dynamically

downscaled (DDS) NCEP output using a Regional
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Climate Model (RegCM2, horizontal grid spacing of

approximately 52 km); (3) statistically downscaled

(SDS) NCEP output; and (4) spatially averaged

measured data used to calibrate the hydrologic

model (Best-Sta). A final data set was introduced in

order to provide a fair means of comparing the relative

performance of downscaled and station-based runoff

simulations. This set consisted of spatially averaged

measured data derived from stations located within

the area of the RegCM2 model output used for each

basin, but excluding Best-Sta set (All-Sta). The All-

Sta timeseries are comparable in scale to the DDS

model resolution and provide an appropriate test to

determine if output at this scale can be used for

simulation of basin-scale hydrology.

Three mountainous basins were chosen for this

analysis: (1) Animas River at Durango, Colorado

(Animas); (2) East Fork of the Carson River near

Gardnerville, Nevada (Carson); and (3) Cle Elum

River near Roslyn, Washington (Cle Elum). The

surface hydrology of these basins is dominated by

snowmelt. The Carson and Cle Elum basins are

also characterized by frequent rain-on-snow events

in the winter months. Tables 1 and 2 list some of

the defining features of each basin, and Fig. 1 shows

the location of each. In this study, for each of the three

basins, daily precipitation and temperature are derived

from statistically and dynamically downscaled NCEP

output and used as inputs to a hydrologic model. Since

the hydrological response of a basin is an integration

of the regional weather conditions (in time and space),

the results presented here will provide comparison of

the overall realism of statistically and dynamically

downscaled precipitation and temperature timeseries

for three mountainous basins in the United States.

2. Data

For each basin, the following daily data/output

were compiled for the purpose of hydrologic model-

ing: (a) measured-station data; (b) NCEP/NCAR

reanalysis (NCEP); and (c) statistically (SDS) and

(d) dynamically (DDS) downscaled NCEP.

2.1. Station data

In order to assess the performance of the NCEP-,

SDS-, and DDS-based simulations of runoff an

appropriate baseline was developed using measured

station data. Our hydrologic modeling strategy

Table 1

Study basins

Study basin

Animas River

at Durango

East Fork of the

Carson River near

Gardnerville

Cle Elum river near

Roslyn

State Colorado California/Nevada Washington

Gauging station ID 09361500 10309000 12479000

Drainage area (km2) 1792 922 526

Elevation range (m) 2000–3700 1600–3000 680–1800

Number of HRUs 121 96 124

Number of stations (excluding Best-Sta)

within RegCM2-buffered area shown in

Fig. 2 (All-Sta)

Precipitation 38 37 27

Temperature 30 21 14

Number of RegCM2 gridpoints within

RegCm2-buffered area shown in Fig. 2

8 7 5

Number of NCEP gridpoints within

NCEP-buffered area shown in Fig. 2

25 24 26

Best 3-station sets (Best-Sta) Precipitation Durango, Cascade,

Lizard, head Pass

Twin lakes hagan’s

meadow lobdell

Fish lakes stampede

stevens pass

Temperature Durango vallecito

dam rico

Tahoe valley twin lakes

blue lakes

Baring cle elum

stampede
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consists of selecting the station set that provides the

best simulation of runoff (Best-Sta), and then tune a

small select group of model parameters to provide the

best possible simulation of runoff given the chosen

station-set timeseries (see Hay et al., 2003). The SDS

output is developed based on the Best-Sta timeseries

for each basin. No such calibration is performed for

the NCEP or DDS model inputs. Thus, use of the

calibrated Best-Sta mean timeseries to assess NCEP

and DDS based runoff simulations will lead to

conclusions that are favorable to the station-based

simulations and unfavorable to the NCEP and DDS

based simulations. Tables 1 and 2 summarize some of

the characteristics of the Best-Sta timeseries for each

basin.

To provide a fair means of comparing the relative

performance of downscaled and station-based runoff

simulations, input timeseries for each basin consisting

of regionally averaged station measurements were

developed. These timeseries (hereafter referred to as

‘All-Sta’) include data on precipitation and tempera-

ture for all stations that fell within the DDS model

output domain (RegCM2) for each basin (see Section

2.4 and Fig. 2), but excludes the station set used for

the hydrologic model calibration (Best-Sta). The

Best-Sta set is used in this study to: (1) provide the

best possible set of hydrologic model parameters

(used in every hydrologic simulation); (2) train the

equations used for SDS; and (3) correct for bias in the

NCEP, DDS, and All-Sta timeseries. The NCEP,

DDS, and All-Sta timeseries are corrected for

systematic bias to distinguish errors in hydrologic

simulations associated with model biases from errors

in hydrologic simulations associated with model

problems in capturing daily meteorological variations.

Tables 1 and 2 summarizes the All-Sta timeseries for

each basin. All input timeseries are described in

Table 3.

Daily maximum and minimum temperatures and

precipitation data from stations in and around each

basin were compiled from the National Weather

Service (NWS) and Snow Telemetry (SNOTEL) data

bases. The NWS data were retrieved from the Utah

Climate Center’s Weather Data Online (http://

climate.usu.edu/Free/). SNOTEL data were retrieved

from the Natural Resources Conservation Service

(ftp://162.79.124.23/data/snow/snotel/snothist/).

2.2. NCEP/NCAR reanalysis

The NCEP/NCAR Reanalysis produced a retro-

active 51-year (1948–1998) record of global atmos-

pheric fields derived from a Numerical Weather

Prediction model kept unchanged over the analysis

period and constrained by observations. Data assimi-

lated into the model consist primarily of free

atmospheric variables such as upper-air temperature,

pressure heights, and humidity from rawinsondes,

pibals, dropsondes, and satellite retrievals. Output

fields represent analyses (e.g. 500 hPa heights), which

are strongly influenced by the data assimilated, as well

as forecast surface variables such as precipitation, soil

Table 2

Elevation ranges

Elevations (m) ranges for each study basin

Animas River at Durango East Fork of the Carson River

near Gardnerville

Cle Elum River near Roslyn

Minimum Mean Maximum Minimum Mean Maximum Minimum Mean Maximum

HRUs 2011 3060 3728 1645 2300 2959 680 1337 1799

Best 3-station (Best-Sta) Precipitation 2010 2609 3109 2438 2560 2804 1027 1162 1241

Temperature 2010 2341 2682 1906 2260 2438 235 678 1219

All Stations (All-Sta) Precipitation 1720 2686 3536 718 1909 2804 52 813 1829

Temperature 1720 2328 3536 718 1104 2804 52 328 1640

RegCM2 gridpoints 1895 2579 2987 1586 1926 2166 279 802 1401

NCEP gridpoints 1168 1928 2480 25 1194 2024 28 880 1632
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moisture, evaporation, and radiative fluxes. Use of a

‘frozen’ model in the Reanalysis eliminates pseudo-

climate jumps in archived timeseries associated with

frequent upgrades in the operational modeling system

used at NCEP, and allows an assessment and

correction of systematic problems in the model. The

model used for the reanalysis is identical to the

Medium Range Forecast model implemented oper-

ationally at NCEP in January 1995 (Basist and

Chelliah, 1997), except that the horizontal resolution

Fig. 1. Location of study basins.
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is twice as coarse in the reanalysis version. The model

employs a horizontal grid spacing of approximately

210 km, with 28 vertical sigma levels.

Daily NCEP precipitation and temperature time-

series were calculated by extracting NCEP output

from within a 500 km buffered area for each basin

(see Fig. 2) and interpolating to the mean of the Best-

Sta location (average of three stations) using Cress-

man (inverse-distance) interpolation. The search

radius of 500 km is somewhat arbitrary. Due to the

coarse horizontal resolution of the NCEP output

(2.58), a search radius of at least 200 km is generally

required to ensure a basin is completely surrounded

by NCEP gridpoints. We use the larger 500 km

radius to compensate for problems with horizontal

moisture diffusion in the NCEP Reanalysis model.

Fig. 2. NCEP and RegCM2 gridpoints used in each basin.

Table 3

Meteorological inputs (precipitation and maximum and minimum

temperature) to the hydrologic model

# Abbreviation Description

1 Best-Sta Best 3-station set

2 All-Sta All stations within RegCM2-buffered area

shown in Fig. 2 but excluding ‘Best-Sta’

stations

3 NCEP All gridpoints within NCEP-buffered area

shown in Fig. 2

4 DDS Dynamically downscaled NCEP output (using

RegCM2). All RegCM2 gridpoints within

RegCM2-buffered area shown in Fig. 2

5 SDS Statistically downscaled NCEP output

6 Bias-All ‘All-Sta’ stations with a bias correction applied

7 Bias-NCEP ‘NCEP’ output with a bias correction applied

8 Bias-DDS ‘DDS’ with a bias correction applied
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As discussed by Kistler et al. (2001), the formulation

of horizontal moisture diffusion in the reanalysis

model causes moisture convergence, leading to

isolated ‘bulls eyes’ of high precipitation in some

gridpoints. The 500 km search radius provides a

spatial smoothing of the NCEP precipitation field,

and more realistic interpolated timeseries in each of

the basins examined in this study. Table 2 summar-

izes some of the characteristics of the NCEP

gridpoints chosen for each basin. Note for each

basin, maximum and minimum temperature were

computed from average temperature based on the

monthly diurnal temperature range calculated from

the Best-Sta timeseries for each basin.

2.3. Statistical downscaling

In the SDS technique, atmospheric variables

included in the NCEP forecast archive were used as

predictors in a multiple linear regression approach to

forecast precipitation occurrence, precipitation

amounts, maximum temperature, and minimum

temperature for the three basins in this study. To

provide a fairly complete description of forecasted

atmospheric conditions, a large pool of potential

predictor variables (approximately 350 variables) was

examined. Predictor variables include geopotential

height, temperature, wind, and humidity at five

pressure levels (300, 500, 700, 850, and 1000 hPa),

various surface flux variables (e.g. downwelling

shortwave radiation flux, 24 h accumulated precipi-

tation), and computed variables such as vorticity

advection, zonal and meridional moisture fluxes, and

stability indices. All predictor variables are taken

from within a 500 km buffered area for each basin (see

Fig. 2) and interpolated to the mean of the Best-Sta

location (average of three stations) using Cressman

(inverse-distance) interpolation. This buffered area

was identical to that used to extract the NCEP

precipitation and temperature timeseries described

above.

The SDS equations were developed using multiple

linear regression with forward selection (Antolik,

2000). The forward selection procedure first identifies

the predictor variable (e.g. 500 hPa height) which

explains the most variance of the predictand (e.g.

maximum temperature at a point location). It then

searches through the remaining variables, and selects

the variable that most reduces the remaining unex-

plained variance in combination with the variable

already chosen. If the improvement in explained

variance exceeds a given threshold (taken here as

1%), the variable is included in the multiple linear

regression equation. The remaining variables are

examined in the same way until no further improve-

ment is obtained based on the correlation threshold.

To assess skill, the downscaling operation is

conducted via cross validation (Michaelsen, 1987).

For analysis of each month, the data for a year was

withheld. All calculations were performed without it,

and the downscaling was evaluated with the reserved

data. This process was repeated for each year in the

observed record. For example, the NCEP output and

observed values for 1985 are held out. A downscaled

NCEP value for 1985 is found based on the

downscaling relations found from all other years.

We then hold out the NCEP output and observed

values for 1986, and compute 1986 values for

downscaling relationships for all other years. By this

approach, the downscaled NCEP value for any given

year is independent of the observed value for that

year.

A final step in the downscaling procedure is

stochastic modeling of the residuals in the multiple

linear regression equations to provide an assessment

of model uncertainty and permit the generation of

probabilistic forecasts. For maximum and minimum

temperature, this is achieved by extracting a random

number from a normal gaussian distribution (mean of

zero and standard deviation of one), multiplying

the random number by the standard deviation of the

regression residuals, and adding this product to the

forecast of temperature. For precipitation, we first

determine precipitation occurrence. A random num-

ber is drawn from a uniformly distributed distribution

ranging from zero to one. If the random number is

lower than the forecasted probability of precipitation

occurrence, the day is classified as a precipitation day.

Precipitation amounts are only forecasted for precipi-

tation days. After forecasting precipitation amounts,

residuals are modeled stochastically using methods

identical to those used for maximum and minimum

temperature, and then the forecasted (normally

distributed) precipitation amounts are transformed

back to the original gamma-type distribution of

observed precipitation using the non-parametric
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probability transform techniques described above.

The stochastic modeling of the regression residuals

inflates the variance of precipitation and temperature

forecasts, reducing problems of variance under-

estimation that are typical of regression-based

models.

2.4. Dynamical downscaling

The Regional Climate Model selected to dyna-

mically downscale the NCEP output was RegCM2

(Giorgi et al., 1988). We used the 10-year run

performed by the Atmospheric Sciences Depart-

ment, Iowa State University. This version of

RegCM2 used the continental US domain of the

PIRCS experiments (see Fig. 1 in Takle et al.

(1999)). A 10 years run (1979–1988) was conducted

using 6 h output from NCEP to define initial and

boundary conditions. These were supplemented by

observations of water-surface temperature in the

Gulf of California and the Great Lakes, which are

poorly resolved in the reanalysis. Precipitation was

simulated using the Grell (1993) convection scheme

and the simple warm-cloud explicit moisture scheme

of Hsie et al. (1984). The simulations also used the

NCAR Community Climate Model version 2

radiation package (Briegleb, 1992), the BATS

version 1e surface package (Dickinson et al.,

1992), and the non-local boundary layer turbulence

scheme of Holtslag et al. (1990).

The RegCM2 grid spacing is 52 km on a Lambert

conformal projection of the middle latitudes. Fig. 2

shows the RegCM2-gridpoints chosen for analysis in

each of the three study basins. A buffer equal to that of

the RegCM2 grid spacing was generated around each

basin boundary and all RegCM2-gridpoints that fell

within this buffered area were chosen for this analysis

(see Fig. 2). Note the RegCM2 buffered area is much

smaller than an NCEP grid box (Fig. 2). Table 2

summarizes some of the characteristics of the

RegCM2 gridpoints chosen for each basin.

3. Hydrologic model

The hydrologic model chosen for this study is

the US Geological Survey’s Precipitation Runoff

Modeling System (PRMS) (Leavesley et al., 1983;

Leavesley and Stannard, 1995). PRMS is a

distributed-parameter, physically based watershed

model. Distributed parameter capabilities are pro-

vided by partitioning a watershed into Hydrologic

Response Units (HRUs). Basin and HRU delinea-

tion, characterization, and parameterization were

done for each basin using a geographic information

system (GIS) interface. HRUs were delineated

identically for each basin by (1) subdividing the

basin into two flow planes for each channel;

(2) subdividing the basin using three equal area

elevation bands; and (3) intersecting the flow-plane

map with the elevation-band map. The number of

HRUs resulting from this process for each basin are

listed in Table 1. The elevation ranges of the

HRUs are listed in Table 2.

PRMS uses daily inputs of the climate variables

precipitation (PRCP), maximum temperature

(TMAX), minimum temperature (TMIN), and solar

radiation. TMAX, TMIN, and PRCP are available at

most climate stations across the United States. Solar

radiation is generally not measured at the climate

stations used in this study, so shortwave and longwave

radiation were computed empirically using algorithms

in PRMS (see Leavesley et al. (1983) for more

information). TMAX, TMIN, and PRCP are estimated

for each HRU by using the xyz methodology

described in Hay et al. (2003). The xyz methodology

uses measured TMAX, TMIN, and PRCP from a

group of stations (or gridpoints) and spatially

distributes from one point (a single daily mean

value) to each HRU in a basin. The method allows

for station data and gridpoints (i.e. DDS and NCEP

timeseries) to be distributed similarly, both starting as

a single daily mean value (note SDS output is at the

average of the Best-Sta station location in each basin).

PRMS is conceptualized as a series of reservoirs

(impervious zone, soil zone, subsurface, and ground-

water) whose outputs combine to produce streamflow.

For each HRU, a water balance is computed daily and

an energy balance is computed twice each day. The

sum of the water balances of each HRU, weighted by

unit area, produces the daily watershed response.

Hydrologic model parameters describing topo-

graphic, vegetation, and soils characteristics were

generated for each HRU from four digital databases:

(1) USGS 3-arc second digital elevation models;

(2) State soils geographic (STATSGO) 1-km gridded
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soils data (US Department of Agriculture, 1994);

(3) US Forest Service 1-km gridded vegetation type

and density data (US Department of Agriculture,

1992); and (4) USGS 1-km gridded Land Use/ Land

Cover data (Anderson et al., 1976). An objective

parameter estimation and calibration procedure was

used to prevent biasing parameter estimates to any

particular meteorological timeseries (Leavesley et al.,

2002). Using this procedure, no changes are made to

GIS generated spatial parameters. Calibration focused

on the water balance parameters affecting potential

evapotranspiration and precipitation distribution, and

on subsurface and ground-water parameters affecting

hydrograph shape and timing (Leavesley et al., 2002).

Other model parameters were based on parameter sets

from model applications to comparable basins in the

same region (Leavesley et al., 1992).

4. Hydrologic model input data

The hydrologic model PRMS was forced with a

daily mean TMAX, TMIN, and PRCP value derived

from the following sources: (1) measured-station data;

(2) NCEP output; (3) DDS; and (4) SDS output. DDS

output for the United States was available from 1979–

1988. To remove the bias from the state variables in

each basin, PRMS was initialized with station data

from October 1, 1977 to December 31, 1978. Then, 10

years (1979–1988) of TMAX, TMIN, and PRCP were

distributed to the HRUs in each basin using daily

mean TMAX, TMIN, and PRCP values from climate

stations, NCEP output, and downscaled NCEP output.

Due to the stochastic nature of SDS, the SDS-based

simulations of runoff included 100 ensembles.

Figs. 3–5 show the daily basin TMAX, TMIN, and

PRCP mean by month for the meteorological input

timeseries listed in Table 3 (excluding the bias-

corrected timeseries) for the Animas, Carson, and Cle

Elum basins, respectively. The SDS values are

represented by a range computed from the 100

ensembles.

4.1. Temperature

Figs. 3a,b–5a,b show the daily basin TMAX and

TMIN mean by month computed using the Best-Sta,

All-Sta, NCEP, DDS, and SDS timeseries for

the Animas, Carson, and Cle Elum basins, respect-

ively. Examination of the TMAX and TMIN indicate

problems with the All-Sta, NCEP, and DDS tempera-

ture data when compared with the Best-Sta. The All-

Sta TMAX values are similar to Best-Sta values, but

the All-Sta TMIN values are higher than Best-Sta

values in the Animas and Carson River basins. NCEP

TMAX values are consistently higher than Best-Sta

values in the Carson River basin. NCEP TMAX

values in the Animas and Cle Elum River basins are

generally lower than Best-Sta values in the winter and

higher in the summer months. DDS TMAX values are

lower than Best-Sta values. DDS TMIN values are

consistently higher than Best-Sta values in the

Animas River basin. SDS temperature values are

nearly identical to the Best-Sta values in all three

basins.

A simple bias correction was performed on the raw

All-Sta, NCEP, and DDS TMAX and TMIN time-

series to produce the Bias-All, Bias-NCEP, and Bias-

DDS TMAX and TMIN timeseries, respectively.

Biases were removed in the NCEP (and DDS and

All-Sta) timeseries by (1) computing a monthly

climatology of the NCEP TMAX and TMIN for

each day; (2) subtracting the daily NCEP value of

TMAX and TMIN from that climatology (to produce

a daily anomaly value); and (3) adding the daily

TMAX and TMIN anomaly from the NCEP model

to the corresponding Best-Sta monthly station

climatology of TMAX and TMIN. Because there

were only 10 years of DDS output available for this

study, an independent timeseries was not used to

produce the TMAX and TMIN bias corrections. Due

to the nature of the TMAX and TMIN bias correction,

the monthly climatologies of Bias-NCEP, Bias-DDS,

Bias-All, and Best-Sta are the same as the Best-Sta

data (not shown).

TMAX and TMIN bias adjustments ‘correct’ the

monthly mean values of All-Sta, DDS, and NCEP, but

daily values of Bias-DDS generally do not contain the

day-to-day variability present in the Best-Sta, All-Sta,

NCEP, or SDS daily values for any of the basins. Fig. 6

shows for each basin the R-square values for TMAX

and TMIN calculated between daily Best-Sta values

and: (1) All-Sta; (2) Bias-All; (3) DDS; (4) Bias-DDS;

(5) NCEP; (6) Bias-NCEP; and (7) SDS. R-Square

values using SDS are as good or better than when

using Bias-All. R-square values using Bias-DDS
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output are the lowest of the bias-corrected input

timeseries (solid horizontal line in each plot). In all

cases Bias-NCEP R-square values are better than

Bias-DDS (dotted horizontal line in each plot). This

implies that TMAX and TMIN station data compiled

at the scale of the DDS and NCEP output still contain

the day-to-day variability present in the Best-Sta

timeseries. This is interesting considering the huge

domain used to extract the NCEP output (see Fig. 2).

The DDS output may have identical monthly means

values, but does not contain the day-to-day

variability in TMAX and TMIN present in the

measured station data.

4.2. Precipitation

Figs. 3c, 4c and 5c show the daily basin PRCP

mean by month computed using the Best-Sta, All-Sta,

Fig. 3. Daily basin mean TMAX, TMIN, and PRCP by month for the Animas River basin.
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NCEP, DDS, and SDS timeseries for the Animas,

Carson, and Cle Elum basins, respectively. Compari-

son of the All-Sta, NCEP, DDS, and SDS with the

Best-Sta PRCP timeseries shows that they all capture

the gross aspects of the seasonal cycle of PRCP in all

three basins, although there are some large discre-

pancies when using NCEP, All-Sta and DDS.

Based on these results, the raw NCEP, DDS, and

All-Sta PRCP timeseries were ‘corrected’ for biases.

The bias corrections were made on a monthly basis

Fig. 4. Daily basin mean TMAX, TMIN, and PRCP by month for the Carson River basin.
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using a gamma transform which preserved the PRCP

distribution. This procedure is similar to the transform

method suggested by Panofsky and Brier (1968).

The NCEP (and All-Sta and DDS) PRCP biases

were corrected using the following steps: (1) force

the NCEP PRCP values to have the same number of

PRCP days as the Best-Sta timeseries (Table 1). This

was accomplished by (a) ranking the NCEP PRCP

output and (b) setting all values to zero with ranks

equal to or lower than the number of dry days in

Fig. 5. Daily basin mean TMAX, TMIN, and PRCP by month for the Cle Elum River basin.
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the Best-Sta timeseries; (2) fit a gamma distribution to

the resultant Best-Sta and NCEP timeseries (restricted

to PRCP days); (3) for each NCEP PRCP day (i.e. all

NCEP values above the thresholds identified in step

(1b)), compute the cumulative probability in the

gamma distribution fitted to the NCEP output, and

then replace the raw NCEP value with the PRCP

amount associated with the matched cumulative

probability in the gamma distribution fitted to the

Best-Sta data. Because there were only 10 years of

DDS output available for this study, an independent

timeseries was not used to produce the DDS PRCP

bias corrections. Monthly values of Bias-NCEP, Bias-

DDS, and Bias-All are similar to Best-Sta data (not

shown).

The bias adjustments to the All-Sta, NCEP, and

DDS PRCP may ‘correct’ the monthly mean values

(Figs. 3c–5c), but daily values of the bias-corrected

timeseries do not contain the day-to-day variability

present in the Best-Sta values for any of the basins.

Fig. 6 shows for each basin the R-square values for

PRCP calculated between daily Best-Sta values and:

(1) All-Sta; (2) Bias-All; (3) DDS; (4) Bias-DDS;

(5) NCEP; (6) Bias-NCEP; and (7) SDS. R-square

Fig. 6. TMAX, TMIN, and PRCP R-square values for each basin calculated using Best-Sta timeseries and: (1) All-Sta; (2) Bias-All; (3) DDS;

(4) Bias-DDS; (5) NCEP; (6) Bias-NCEP; and (7) SDS daily timeseries.
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values are not greater than 0.75 for any of the basins

indicating that none of the input timeseries contain the

day-to-day variability seen in the Best-Sta timeseries.

Note that the SDS R-square values are the highest in

two out of three basins and are always greater than the

DDS values.

5. Hydrologic model output

Figs. 7–9 show scatter plots of measured versus

simulated daily runoff and the corresponding Nash-

Sutcliffe (NS) goodness-of-fit statistic (Nash and

Sutcliffe, 1970) for the three basins, respectively,

Fig. 7. Measured versus simulated runoff and corresponding Nash-Sutcliffe Goodness-of-Fit statistic (NS) for the Animas River basin. NS

computed between measured runoff and PRMS simulated runoff using: (a) Best-Sta; (b) SDS; (c) All-Sta; (d) Bias-All; (e) DDS; (f) Bias-DDS;

(g) NCEP; and (h) Bias-NCEP input timeseries.
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using the input timeseries listed in Table 3. Fig. 10

summarizes the NS values listed in Figs. 7–9. For

PRMS runoff simulated using the Best-Sta timeseries

(Fig. 7–9a), the NS values are all above 0.75,

indicating a good fit even with minimal calibration

of the PRMS model parameters. As expected, PRMS

outputs simulated using All-Sta, DDS, and NCEP

(Figs. 7c,e,g–9c,e,g), result in much lower NS

Fig. 8. Measured versus simulated runoff and corresponding Nash-Sutcliffe Goodness-of-Fit statistic (NS) for the Carson River basin. NS

computed between measured runoff and PRMS simulated runoff using: (a) Best-Sta; (b) SDS; (c) All-Sta; (d) Bias-All; (e) DDS; (f) Bias-DDS;

(g) NCEP; and (h) Bias-NCEP input timeseries.
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values (from 0.3 to 0.6 for All-Sta, less than 0.4 for

DDS and below 0.2 for NCEP). For PRMS outputs

simulated using bias-corrected input, model skill

improves, but in all basins the NS values are

significantly lower than those simulated using

the Best-Sta or SDS input timeseries. PRMS

model runoff simulated with SDS is as good as

that simulated using Best-Sta data with a slight

exception in the Cle Elum basin. Note that runoff

simulated using Bias-DDS has the lowest NS values

Fig. 9. Measured versus simulated runoff and corresponding Nash-Sutcliffe Goodness-of-Fit statistic (NS) for the Cle Elum River basin. NS

computed between measured runoff and PRMS simulated runoff using: (a) Best-Sta; (b) SDS; (c) All-Sta; (d) Bias-All; (e) DDS; (f) Bias-DDS;

(g) NCEP; and (h) Bias-NCEP input timeseries.
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of the bias-corrected results with the exception of

the Carson River basin.

6. Summary and discussion

This study was initiated to examine possibilities

for using statistically and dynamically downscaled

output in hydrologic applications. Eight types of

input timeseries (TMAX, TMIN, and PRCP) were

tested using the hydrologic model PRMS (listed in

Table 3). PRMS runoff simulated using Best-Sta and

SDS timeseries produced realistic daily runoff in all

three study basins (Figs. 7a,b – 9a,b and 10).

Analysis of the daily basin mean TMAX, TMIN,

and PRCP by month computed using All-Sta,

NCEP, and DDS timeseries indicated that these

timeseries needed a bias correction (Figs. 3–5).

PRMS runoff simulated using bias-corrected All-Sta

timeseries (Bias-All) produced realistic daily runoff

Fig. 10. Nash-Sutcliffe Goodness-of-Fit statistic (NS) for the: (a) Animas; (b) Carson; and (c) Cle Elum River basins.
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that was as good or better than that produced using

the Bias-NCEP or Bias-DDS timeseries. The All-Sta

timeseries were tested to determine if an area as

large as that covered by gridpoints used in the DDS

timeseries (see Fig. 2) could produce realistic

TMAX, TMIN, and PRCP for basin-scale modeling.

Results indicate that, after bias correction, the large-

scale Bias-All timeseries performed almost as well

as the Best-Sta timeseries, indicating that large-scale

data can be made appropriate for hydrologic

modeling in the three basins examined for this

study. The NCEP timeseries were extracted from

a significantly larger area than that used for the

DDS or All-Sta (see Fig. 2). Interestingly enough,

runoff simulated using Bias-NCEP was better

than that using Bias-DDS in two out of three basins

(Fig. 10). The most significant results were from

runoff produced using the SDS input. In all

three basins, SDS-based runoff simulations were

almost as good or better than that produced using

Best-Sta, Bias-All, Bias-DDS, or Bias-NCEP

(Fig. 10).

Fig. 6 indicated that the day-to-day variability,

present in the Best-Sta PRCP timeseries, was not

replicated in any of the other timeseries (though SDS

had the highest R-square values in two out of three

basins). Snowmelt-dominated basins are much more

strongly controlled by TMAX. The day-to-day

variability present in the Best-Sta TMAX timeseries

was best represented by the All-Sta and SDS

timeseries. DDS-based timeseries had the lowest R-

square values for TMAX. In snowmelt dominated

basins, daily variations in PRCP tend to be of less

importance. A correct volume of PRCP over the

accumulation season (e.g. as represented in the April 1

snowpack) is what the hydrologic model requires.

Because variability of runoff in snowmelt-dominated

basins are much more strongly controlled by daily

variations in temperature rather than precipitation,

runoff simulated using SDS timeseries were as

realistic as those produced using the Best-Sta time-

series. These results are consistent with Wilby and

Dettinger’s (2000) study of snowmelt-dominated

basins in the Sierra Nevada. In their study they

concluded that much of the hydrologic ‘skill’ arises

from the fact that the snowpack integrates individual

precipitation events throughput the winter season.

The errors in daily precipitation, tend to cancel each

other out. In contrast to rainfall-dominated basins,

where the skill in modeling runoff is dependent on the

skill of capturing discrete precipitation events, the

skill of hydrologic simulations in snowmelt-domi-

nated basins is due to simulations of the total

snowpack and melt processes (which are largely

influenced by TMAX).

7. Conclusions

The hydrologic response in three snowmelt-

dominated basins in the western United States to

dynamically- and statistically downscaled output

from the National Centers for Environmental Pre-

diction/National Center for Atmospheric Research

Reanalysis (NCEP) was examined. Runoff produced

using a distributed hydrologic model was compared

using daily precipitation and maximum and minimum

temperature timeseries derived from the following

sources: (1) NCEP output; (2) dynamically down-

scaled (DDS) NCEP output using a Regional Climate

Model (RegCM2); 3) statistically downscaled (SDS)

NCEP output; (4) spatially averaged measured data

used to calibrate the hydrologic model (Best-Sta)

and (5) spatially averaged measured data derived

from stations located within the area of the RegCM2

model output used for each basin, but excluding the

Best-Sta set (All-Sta). The All-Sta timeseries are

comparable in scale to the DDS model resolution and

provide an appropriate test to determine if output at

this scale can be used for simulation of basin-scale

hydrology.

The All-Sta, NCEP, DDS, and SDS timeseries

capture the gross aspects of the seasonal cycles of

TMAX, TMIN, and PRCP. However, in all three

basins large systematic biases in the All-Sta, NCEP,

and DDS simulations of TMAX, TMIN, and PRCP

were evident, which translated into unrealistic simu-

lations of runoff. The All-Sta, NCEP, and DDS

timeseries were corrected for biases (Bias-All, Bias-

NCEP, and Bias-DDS, respectively).

Simulated runoff based on Best-Sta, SDS, Bias-

All, Bias-NCEP, and Bias-DDS output were

evaluated on a daily basis. SDS-based simulations

of runoff were as good or better than Best-Sta.

Bias-All based simulations of runoff were as good

or of poorer quality than SDS. Bias-NCEP based
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simulations were as good or of poorer quality than

Bias-All. Bias-DDS based simulations of runoff

were always of poorer quality than Best-Sta and

SDS. In two out of the three basins, Bias-NCEP

based simulations were better than Bias-DDS.

These results indicate that in snowmelt-dominated

basins, TMAX, TMIN, and PRCP averaged over a

large area can have the daily variations necessary

for basin-scale modeling (as evidenced by the Bias-

All results). The snowmelt-dominated basins are

strongly controlled by accurate estimates of

TMAX, therefore capturing daily variations in

PRCP was found to be less important, and only

the volume of PRCP over the accumulation season

needs to be correct.

In conclusion, climate data of similar resolution to

that of the DDS model can be made appropriate for

basin-scale modeling when a bias correction is

applied. This need for statistical correction (essen-

tially a magnitude correction) may be somewhat

troubling, but in the case of the large station-

timeseries (All-Sta), the magnitude correction did

indeed ‘correct’ for the change in scale. This was not

shown to be true for the bias-corrected DDS output in

two of the three basins. The DDS output could be

‘corrected’ for magnitude but did not contain the day-

to-day variability needed for basin-scale modeling in

snowmelt-dominated basins, present in the All-Sta

and SDS timeseries. The major advantage of using

Regional Climate Model output to simulate runoff is

their physical realism. It is unknown if statistical

corrections to model output will be valid in a future

climate. Future work is warranted to identify the

causes for (and removal of) systematic biases in DDS

simulations, and improve DDS simulations of daily

variability in local climate. Until then, SDS-based

simulations of runoff appear to be the safer down-

scaling choice.
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