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Decision Making and the Future
of Nature: Understanding and
Using Predictions

Roger A. Pielke, Jr., Daniel Sarewitz, and Radford Byerly, Jr.

A Prediction Enterprise

The story, by now, is familiar. A danger or opportunity is lurking out
there, perhaps ill defined, imminent or in the more distant future, and
decision makers must take action. While our ten cases are diverse, each
is rooted in an effort to mobilize predictive science to pursue desired
outcomes on behalf of society.

We know what undesired outcomes look like: more than ten thou-
sand deaths from Hurricane Mitch in Central America in 1998; losses of
$20 billion as a consequence of the 1993 Midwest floods; serpentine
lines of cars waiting for gasoline during times of shortage; acidified lakes
in temperate forests. Other outcomes are yet left to the imagination:
toxic effluent leaching from pit mines and nuclear waste repositories
into groundwater supplies; huge conflagrations ignited by giant asteroid
impacts; fragile ecosystems collapsing under the pressure of rapid cli-
mate change. Of course, the future of human interaction with nature
does not offer only disaster. Changing weather patterns might allow for
more efficient agricultural harvests; the discovery of new hydrocarbon
reserves (or new energy technologies) might enhance economic well-
being and lessen the incentive to drill for oil in ecologically sensitive
areas. But underlying every such scenario, whether pessimistic or hope-
ful, is the assumption by those demanding action that knowledge of the
future is necessary to prevent negative outcomes and to capitalize on
opportunities for gain.

It is not surprising, then, that each year policy makers invest tens of
billions of dollars of public funds into technologies ranging from satel-
lite-based observational platforms in the sky, to stream gauges on the
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ground, to seismometers in the deep ocean in an effort to monitor the
environment and provide an ever expanding database for scientific pre-
diction of the future of nature. Prediction has been central to such orga-
nized efforts as the U.S. Global Change Research Program, the U.S.
Weather Research Program, the National Earthquake Hazards Reduc-
tion Program, the Advanced Hydrological Prediction System, the
National Acid Precipitation Assessment Program, the Yucca Mountain
nuclear waste repository site assessment process, and the Near-Earth
Asteroid Tracking Program. Each of these science programs has been
justified in terms of the need to support decisions in the present through
better scientific understanding of the future.

The quest for prediction of earth systems exists in a dynamic social
and political milieu that we call the “prediction enterprise.” The public
demands action or useful information that can facilitate action. But
because the public comprises a great diversity of interests and values, it
rarely, if ever, speaks with one voice about what that action or informa-
tion ought to be. Other participants in the prediction enterprise include
policy makers looking to satisfy (or at least address) conflicting demands
made by their constituents and a scientific community looking to help
define and resolve problems while at the same time satisfying its own
desire to expand the frontiers of knowledge.

The prediction enterprise also involves institutions. At the interna-
tional level, the United Nations coordinates activities to address climate
change and natural disasters. Within the United States, the Federal
Emergency Management Agency and its state and local counterparts
together help citizens prepare for and respond to disasters; the National
Weather Service disseminates the latest meteorological information; the
Bureau of Land Management seeks to manage public lands according to
its legal mandate. Universities and federally funded laboratories are
integral parts of the prediction infrastructure. Private-sector institutions
are also involved: the insurance industry seeks profit from investments
based on a balancing of risks, airlines depend on weather forecasts to
maintain safety and schedules, and the construction industry imple-
ments building standards aimed at preventing damage from a variety of
natural hazards.

How effectively does this prediction enterprise serve the common
interest? Its sheer complexity—diverse participants, conflicting per-
spectives and values, numerous institutions representing different sec-
tors of society, and significant resources at stake—makes evaluation a
daunting task. In fact, the existence of a prediction enterprise has not
been recognized as such, in part, perhaps, because prediction seems like
such a “natural” part of science (chapter 2), society (chapter 15), and
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policy (chapter 1). Yet the prediction enterprise is as real and pervasive
as “the economy” or “the medical system.” As with the medical system,
for example, one can look in many directions for accountability: to sci-
entists, the media, government regulators, politicians, special interests,
the nonexpert public. But unlike the economy or the medical system,
little attention has been focused on the prediction enterprise. We there-
fore lack insight that can be applied to decision making at the intersec-
tion of predictive science and environmental policy. The cases in this
volume begin the task of developing such insight.

Predictions are commonly viewed simply as pieces of information, as
quantitative products of scientific research. From that perspective a pre-
diction is understood as a “set of probabilities associated with a set of
future events” (Fischoff 1994). To understand a prediction, one must
understand the specific definition of the predicted event (or events), as
well as the expected likelihood of the event’s (or events’) occurrence.
When predictions are seen in this light, then the goal of the prediction
enterprise is simply to develop good predictions, as evaluated by objec-
tive criteria such as accuracy and skill.

Yet once we have recognized the existence of a prediction enterprise, it
becomes clear that prediction is more than just a product of science.
Rather, it is a complex process. This process includes all of the interactions
and feedbacks among participants, perspectives, institutions, values,

. interests, resources, decisions, and other factors that constitute the predic-

tion enterprise. From this perspective, the goal of the prediction enterprise
is good decisions, as evaluated by criteria of common interests.! The com-
mon interest is often invoked in areas such as social security and health
care policy, but it should also be a rationale for the prediction enterprise.

Prediction as a Product

A central irony of this book is that the quest for prediction products can
in some cases undermine the societal goals that originally motivate the
quest. In the cases of earthquakes, global climate change, beach nour-
ishment, nuclear waste, and mine impacts, for example, decision mak-
ing might be improved through less reliance on predictions. Effective
decisions are not necessarily promoted by “good” prediction products
and not necessarily prevented by “bad” ones. Even so, there will be
cases in which reliance on prediction is unavoidable. Knowing when to
depend on predictions is itself a challenge of the prediction process and
one taken up in greater detail below. (See box 18.1.)



. BOX1B.1
Design of Critical Facilities without Time-Specific Predictions

Thomas L. Anderson, Construction Engineer

Thc? er.lgineering community is moving away from traditional pre-
scriptive building codes toward performance-based design cri-
teria. Experience shows that prescriptive codes do not ensure
that a critical facility will continue to function in case of a nat-
ural hazard event, while performance-based codes are designed
to ensure a specified level of performance in the face of specified
hazards. Natural hazards of traditional concern include earth-
quakes and high winds.

Performance codes do not depend on prediction of specific

events at specific times or places; rather, they use information
based on past events and general understanding of hazard phe-
nomena to determine the maximum expected level of stress
placed on a building by a potential event..
. Two examples illustrate the effective use of earthquake-related
information in the design and construction of critical facilities.
The examples involve the Fire Command and Control Facility
(FCCF) in Los Angeles County, California, and the proposed trans-
Alaska Natural Gas Pipeline (ANGP). The FCCF receives all fire and
medical 911 calls for Los Angeles County and is responsible to
over three million county residents. The proposed ANGP was to
carry natural gas from the Prudhoe Bay fields to a terminal in
southern Alaska along a route that generally paralleled the trans-
Alaska oil pipeline.

The information needed for the FCCF design was the ground
motions for the largest earthquake that could be expected from
the several nearby faults in the region. The design requirement
was for the FCCF to remain functional during and following such

an event. Design alternatives were subjected to detailed calcula-
tions of their response to expected earthquake motions. All un-
certainty factors were provided to the design team so that they
could compare building designs based on equal values of assumed
parameters and other forms of uncertainty. There was a very close
and collaborative relationship between the seismologists and the
design engineers at every step in the process. The final decision
was based on lowest life-cycle cost and lower first cost to achieve
the performance level demanded by the county.

The information needed for the ANGP was the expected ground
movement where the pipeline crossed active faults. The perfor-
mance requirement was to lower the risk of pipeline rupture to
less than 1/2,500 a year. The project geotechnical team provided
the required fault motion descriptions in great detail based on
extensive research and fieldwork, and uncertainties were fully
disclosed and expressed in terms understandable to the design
engineers. Design engineers have a “tool kit” of strategies that
allow a buried pipeline to withstand a wide range of abrupt fault
movements, i.e., without having to resort to placing the pipeline
above ground on sliding supports, where it is exposed to many
other hazards. But use of those tools requires the predicted fault
motions to be fully defined, including the nature of uncertainties
in those motions. Armed with those data, lowest life-cycle cost
designs were readily developed for each of the fault crossings to
keep the risk of rupture below the acceptable level.

These examples show how in many situations experiential in-
formation coupled with understanding can be more useful than
uncertain predictions. The construction engineer wants to build
safely, i.e., to an acceptable level of risk, no matter when an
earthquake occurs.

Accuracy

Given that one has decided to rely on predictions for decision making
how does one know whether a particular prediction product is a gooci
one? A critical assessment criterion is accuracy—a measure of how
closely a specific prediction product conforms to the actual event
(./_\schexj 1981). The value of accuracy may seem too obvious to merit
@scussmn, but sometimes accuracy is impossible to evaluate; and other
times, when evaluation is possible, decision makers fail to do it. The
case studies of beach erosion and mining showed that once a forecast is

produced and used in decision making, there may even be disincentives
to looking back and assessing predictive accuracy.

Attempts to “retrodict” or “hindcast” past events can give a measure
of the accuracy of predictive methods and has been central to assess-
ment of global climate models (see chapter 13). Comparing different
prediction methodologies can also give some indication of accuracy
because if the results of independent predictions diverge, they cannot
all be right (although they could all be wrong). However, the case of
nuclear waste disposal showed that convergence of different
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predictions on a similar result is not necessarily a sign of accuracy,
either. Shared scientific assumptions and political incentives may cause
“independent” predictions to converge on a result that is palatable, even
if incorrect (see chapter 10). Predictions of beach erosion and oil and gas
reserves show similar evidence of such “convergence of convenience.”

The ultimate test of a prediction, of course, is to evaluate its accuracy

against actual events as they unfold, which is not as straightforward as
it might seem. Consider the case of early tornado forecasts (Murphy
1996). In the 1880s a weather forecaster began issuing daily tornado
forecasts in which he would predict “tornado” or “no tornado.” After a
period of issuing forecasts, the forecaster found his predictions to be
96.6 percent correct—a performance that would merit a solid A in
school. But others discovered that simply issuing a standing forecast of
no tornadoes would result in an accuracy of 98.2 percent. This finding
suggested that in spite of the high accuracy, action based on the fore-
caster’s predictions could result in costs rather than benefits. In other
words, simply comparing a prediction with actual events does not
provide sufficient information to evaluate its performance. A more
sophisticated approach is needed.

Scientists use a range of techniques to assess the skill of a predic-
tion—skill being defined as the improvement of a prediction over some
standard (Murphy 1997). One way to evaluate skill is to compare the
accuracy of a prediction with the accuracy of some naive baseline. For
example, historical weather information provides such a baseline
because it yields the best estimate of the future occurrence of weather
events, absent any other information. Thus, a forecast is considered
skillful if it improves upon a prediction based on such climatological
data. For instance, the average high temperature over the past one hun-
dred years in London on September 6 (the climatological mean for that
date) might be, say, 10 degrees Celsius. Absent any other information,
the best prediction of the temperature on the next September 6 is thus
10 degrees. Any forecast for that particular day would be considered
skillful if it were closer than the climatological mean to the actual tem-
perature recorded on that date.

Such considerations suggest that our capacity to evaluate prediction
as a technical product depends strongly on what is predicted. The accu-

racy of some types of predictions is clearly amenable to evaluation. -

Weather is the best example, because of the huge number of forecasts,
their wide use by decision makers, and the ease of comparing forecasts
with actual events, which reflects what Byerly (chapter 16) has termed
the short “characteristic time” of weather events. In contrast, if an event
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has a long characteristic time, predictive accuracy often c:annot be eval-
uvated. This situation applies to cases such as g!obal chmate. ~change,
long-term mining impacts, and nuclear waste d1sp.osa1. Decxslol_us on
such issues will have to be made long before the skill of the prech_ctlon
can be assessed. The case of floods (see chapter 5) represex?ts an inter-
mediate case, amenable to some evaluation of skill, yet considerably less
than weather.

Uncertainty o ‘
The science fiction writer Isaac Asimov introduced, in hxs. Foundation
series, the notion of “psychohistorians,” who could predict the future
with scientific certainty based on complex mathematical quels. We
know that Asimov’s characters lie squarely in the realm of science fic-
tion—there can be no psychohistory. Yet the quest for a scientifically
legitimated view of the future is no recent phenomenon; it dates back at
least to the efforts of ancient Egyptian hydroengineers and astronomers
to predict the stages of the Nile. Fifty centuries later, jthe future,, as a
weather predictor might say, still looks partly cloudy. Given Foday S cir-
cumstances, there are many possible ways that tomorrow might u'nf.old
(and even more possibilities for tomorrow’s tomorrow). 'Pf'edlctlon
promises to narrow the range of possible futures so that decision mak-
ing can be more successful. Occasional clearing can occur—we car pre-
dict some events with skill—but uncertainty can never be ehmmatec'l.
Stewart (chapter 3) distinguished between aleatory .arild' epistemic
uncertainty. Aleatory uncertainty is irreducible, because 1t is introduced
by random processes in a closed system—for example, a deck. of cards
or a pair of dice. Epistemic uncertainty, on the other hapd, derives from
incomplete knowledge of a system—perhaps the deale'r is a cheat, or the
dice are loaded. Epistemic uncertainty can sometimes be reduced
through more and better knowledge. . ' .
Even though epistemic uncertainty can be reducefi, if one is deahpg
with open systems (as is generally the case for env1ronmeptal predic-
tions), the level of uncertainty itself can never be known with absolut.e
certainty. Seismologists assigned a probability of 95 percent to their
prediction of the Parkfield earthquake, but the earthquake never
occurred (chapter 7). Were the scientists confounded by the unlikely
but statistically explicable one-out-of-twenty chance of no earthquake?
Or was their probability calculation simply wrong—i.e., was the. uncer-
tainty associated with the prediction in fac't larger. tban 1n1t1a1.1y
thought? We would need many more Parkfield-like predlctlon§ tg begm
to answer such questions. Similarly, regardless of the sophistication



of global climate models, many types of unpredictable events (changes
in solar output, volcanic eruptions that cool the atmosphere, new
energy technologies that reduce carbon emissions) can render climate
predictions invalid and associated uncertainties meaningless (e.g.,
Keepin 1986). One way scientists deal with such “unknowable
unknowns” is by introducing fudge factors into their predictions, as
we saw with beach models, asteroid impact predictions, and global cli-
mate models. _

Moreover, many of our cases show that efforts to reduce uncertainty
reveal vast, previously unrecognized complexities. In such cases, deci-
sion-relevant uncertainties can actually increase with more knowledge.
This dynamic of spiraling uncertainty can have the perverse effect of
increasing political controversy rather than reducing it, leading to calls
for even more research to reduce uncertainties, while the problem that
motivated the research goes unaddressed. As Robinson (1982, p. 249)
observes, “By basing present decisions on the apparent uncovering of
future events, an appearance of inevitability is created that de-empha-
sizes the importance of present choice and further lessens the probabil-

ity of developing creative policy in response to present problems.” The _

counterintuitive lesson for decision makers is that uncertainties about
the future can often be reduced more successfully through decision
making than through prediction. (See box 18.2.)

Predictability

Asteroid orbits can be calculated from observations of the asteroid’s
positions combined with well-understood physical laws (chapter 6).
But in the realm of earth science prediction, asteroid impacts are atypi-
cal. In most other cases, predictability is limited because knowledge of
the future depends on knowing the present, which itself can never be
completely or accurately characterized. For example, weather forecasts
depend on knowing the present state of the atmosphere and then pro-
jecting the future behavior of the atmosphere, based on computer mod-
els. Because the future is dependent on initial conditions, small changes
in these conditions can add up to large differences in outcomes. That is
why maximum weather predictability is about two weeks: even though
the system is well understood, measurement of initial conditions is
invariably subject to error and omission.

The complexity of earth sciences phenomena of interest to policy
makers increases when human and earth processes interact. Consider
nuclear waste disposal. Predicting the performance of a waste facility
ten thousand or more years into the future depends on knowing,

among a multitude of other potentially: relevar{t .facjcors,‘ how mt}ch
precipitation might be expected at the S{te. Precipitation isa funct1op
of global climate patterns. And global climate patterns might be sensi-
tive to human processes such as energy and land use. Energy and land
use are functions of politics, policy, social changes, and so on. What at
first seems a narrow scientific question rapidly spirals into unbounded
lexity. .

<:0I;‘lilzxallyt,ydecision makers sometimes are led to believe that the SO.ph'IS-
tication of a prediction methodology contributes to greater‘ predictive
skill, i.e., that in a complex world, a complex methodology will enhar‘lce
predictability. In reality, the situation is not so clea;-cut. An evaluation
of the performance of complex models in energy, economics, p.oprla-
tion, and other areas has shown that “methodological sophistication
contributes very little to the accuracy of [predictions]” (Ascher 1981, P
258; see also Keepin 1986). Yet energy, econom@cs_, and popp%atl(.)n are
integral to any long-term, policy-relevant pred.lctlve capabll}ty in the
areas of global climate change, nuclear waste disposal, land oil and gas
reserve assessment. Overall, more sophistication can introduce more
uncertainty and more sources of error into a prediction. Our case stud-
ies suggest that better prediction products arise more from tl}e feedback
between predictions and experience than from the mtroduc.tl'on of more
sophisticated predictive methodologies. The lessop for decmqn 'mal_«:ers
is that they should not be overly impressed by clalms_of sophls'gcatlon,
unless those claims are backed up by demonstrable increases in accu-
racy. (See box 18.3.)

The Interface of Product and Process: Understanding Predit.:tior\s

Given the many factors that influence the generatio'n of a scientific pre-
diction, one can see why accurate, useful predicthns. are so hard to
make. Those same factors also ensure that the predictions are harfi to
understand. How should the numerical or statistical output of a given
predictive effort be interpreted? That is a problem that plag'ut'es scientists
(with their “unknowable unknowns”) as well as the decision makers

to use predictions. .

WhToht&:y challenge of understanding predictions was aptly illustrated in
the case of the 1997 flooding of the Red River of the Nortl_l (see chapter
4; also Pielke 1999). In February 1997, forecasters predlcted. that the
river would see flooding larger than at any time in moden} history. At
Grand Forks, North Dakota, forecasters expected. the spring flood to
exceed the 1979 flood crest of 48.8 feet sometime in April. Forecastfers
issued a prediction that the flood would crest at a record 49 feet, hoping



370

CONCLUSION

DECISION MAKING AND THE FUTURE OF NATURE 3N

BOX 18.2
Ranching and Prediction

Rob Ravenscroft, Rancher

As a rancher, I deal with physical and biological systems, as well
as economic and social systems. Since these are dynamic and in-
terconnected, attempts to predict their behavior are probably
wrong more often than right. If honestly done, there are no
“bad” predictions. It’s my responsibility as a manager to use
them properly. .

“Proper” use can be measured only by progress toward a goal.
Technology (including predictions), financial and biological cap-
ital, labor, and (most important) creativity pretty well sum up
the tools a manager can use to devise and implement a plan of
operation.

The dynamic nature of the systems involved, and the inherent
possibility of errors in predictions and assumptions made, means
fchat a plan must have two essential characteristics to be effective
in aghleving personal, family, and business goals. It must be
monitored, and it must be flexible.

I.n ranching, as in most other businesses, the obvious moni-
tpnng areas are financially oriented. But cattle and beef produc-
tlop are just part of the entire biological system. Healthy plants,
{:\{umals, and soils are critical to long-term sustainability of fam-
ilies, ranches, and communities. Biological alarms we watch for
on our ranch are decreases in plant and animal diversity, which
usually indicate some flaw in our plan that could hinder our

ability to deal with future adversity.

Any plan that aims to achieve quality-of-life goals (which is
the real need of the individuals and families implementing the

plan) must be monitored for social impacts, too. If our ranching
and business practices endanger our neighbors and community,
our long-term goals can’t be achieved. This is more difficult to
measure but must be kept in mind.

Early warning is the most effective first step in reversing a
planning mistake or reacting to a change in conditions.
Flexibility built into the plan and the business is the next. For us,
weather and prices are the major risk factors. Those are also fac-
tors that are regularly predicted. Experience shows that neither
can be forecast with great reliability. This means that we can't af-
ford to direct all our assets and efforts to best capitalize on any
one set of predicted conditions. Here again, diversity enhances
flexibility. Diverse plant communities support animals through a
wider range of weather conditions. Diversity in the cattle enter-
prise can supply staying power as prices cycle from low to high.
Monitoring lets us know when we're not achieving our goals; flex-
ibility gives us the chance to replan and get back on track.

Science-based predictions can be enormously helpful. People
are responsible for using such predictions appropriately. In most
cases, that means recognizing that prediction is just one of the
tools that can be used to help achieve goals. Quality-of-life
-based, goal-driven plans that are economically, ecologically,
and socially sound should be applied with flexibility and with a
monitoring system that provides early warning when straying
from the goal occurs. There are no bad predictions, only inappro-
priate uses of predictions.

to convey the message that the flood would be the worst ever experi-
enced. But the message sent by the forecasters was not the message
received by decision makers in the community.

. Decision makers in the community interpreted the event being pre-
dicted and the probabilities associated with the prediction within the
context of their own experience. First, the prediction of 49 feet, rather
Fhan conveying serious concern to the public as the forecasters hoped
instead resulted in reduced concern. Local residents and officials inter:
preted the forecast in the context of the record 1979 flood, which caused

damages but was not catastrophic. With the 1997 crest expected to be
only a few inches higher than the record set in 1979, many expressed
relief rather than concern, perhaps thinking: “We survived that one.
How much worse can a few inches be?” Second, decision makers did
not understand the uncertainty associated with the prediction. All flood
forecasts are uncertain, but predictions of record floods, i.e., floods for
which there is no experience, are especially uncertain. Yet forecasters
issued a quantitative prediction with a simple qualitative warning about
uncertainty. Hence, many decision makers could interpret the forecast



" Box1s.3
Perspective on Prediction Use in Funding Science

Jack Fellows, Government Executive

As someone who worked in the White House's Office of
Management and Budget for many years and dealt with national
public policy issues related to science, space, and the environ-

ment, the factors I would consider important for using or
avoiding misuse of predictions include:

* Problem dynamics. Is using or improving a model’s prediction
even germane to the problem? In the situations I most faced,
I was being asked whether (1) it was worth the cost of im-
proving a predictive model, or (2) the output from a model
would be relevant to a public policy decision. With respect to
the first point, it was difficult to tell many times whether a
model improvement would contribute to policy making or
was only a challenging scientific topic. What could be a sig-
nificant scientific advance might have little impact on those
who might use the prediction in the real world. Depending on
the nature of the situation, either outcome could have value,
but if a model improvement was being proposed to address
policy issues, then the value-added of the improvement to

society needed to be demonstrated. Indeed, some problems

are so oriented toward mitigation or adaptation that im-
provement in prediction is of little consequence. For ex-
ample, better warning and storm shelter unprovemgnts prlgb-
ably would yield significantly more return t'o society than
small improvements in tornado n}odel predictions. "

e Uncertainty and risk. Can scientists _adequatel'y f:haracdesze
the level of uncertainty associated with a pn?dlctmn. and how
best to quantify the benefits or risks associated with those

ainties?

. zzzzztof predictions. This might be v.ievs.red as angther foygl of
uncertainty, but there are uncerta1nt1e§ assoc1atgd v&n _ﬂa\
specific model, and then there is uncertgmty associate V\g n
a range of models addressing the same issue. If {nost mode
tend to have similar results (assun}mg the physics, etc., alie
believable), then I would be n{orgi 1f1fke13(7i to accept the results

if the models significantly ditfered. .

. ;‘?;:;igtg} the model.g How well does the mo@el replicate the
historical record? If not well, then I wo.uld. discount the pr}(:—
diction or not use it at all. Also, does it fit the scale of t e
problem? Is the output global in nature when my prol.)lexil is
local or regional—can I scale down or up to my s1tua;cl101£\. .

e Affordability. Can I afford the mo@el, and do I have the too
and data to run it for my application?

Incertainty in their own terms: Some viewed the forecast as a ceiling:
‘The flood will not exceed 49 feet.” Others viewed the prediction as
incertain, with different individuals estimating uncertainty in the crest
rrediction to range from 1 to 6 feet. The historical record showed that
wverage error for flood crest forecasts was about 10 percent.

On April 22, 1997, the Red River crested at 54 feet, inundating
he communities of Grand Forks, North Dakota, and East Grand
‘orks, Minnesota, and causing $2 billion in damages. In the after-
nath of the flood, local, state, and national officials pointed to inac-
urate flood predictions as a cause of the disaster. In fact, the
ceuracy of the predictions was not out of line with historical per-
ormance by any objective measure. Instead, forecasters failed to
xpress, and decision makers failed to understand, the meaning of
1e prediction, in terms of what was being forecast and the uncer-

ainty associated with it. The failure was one of process, not of prod-
ct. (See box 18.4.)

Other cases presented in this volume further illustrate that_ decision
makers’ understanding of predictive products has a p1:ofound mﬂuer'me
on how—and how well—the products are used. Consider the following
three examples:

1. Debate has raged for more than a decade abo.ut tl_le pohcy'mcllpggztaé
tions of possible future human-caused changes in climate. ’.I‘hls ? ate
has been about “global warming” expressed in terms of 2 single g oCes
average temperature. But no person' and no eco§ystem ;xp:nc?:ter_
global average temperature. Each policy adv9cate is thus : esl ) %nter-
pret that prediction product in support of his or her_ partic dar 1ha )
ests, ranging from pending global catastrc?phe.t.o benign (an perEdipC :
beneficial) change. Uncertainty and t}1e mabxl'lty to compa;)er %r e
tions to experience allow even more 1_nte1:'pret1ve freedom£h e %stin
science is thus used (and misused) to justify z}r}d advance the existing
interests of contesting participants in the political process.
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BOX 18.4
Accuracy of Flood Predictions

Dennis Walaker, Public Works

My area of emergency decision making relates
lated events regarding straight-line wingds, tornadtge.:v %ﬁilze;nries-
heavy rains, and river flooding. Accuracy is what I rr;ost expec’é
of predictions. Timeliness, of course, is also an important ele-
gzﬁi.el\gore lead timehprovides the ability to react efficiently to
amage, save li iti i
reduce dam: r?t, ves, and make our communities more dis-
A flood forecast is a guide, not an absolute. If -
solute accuracy, you will be disappointed beczzgee};rr)::;chﬁ-
related events have numerous variables that are all subject to
change. .The best flood forecast model can be wrong if conglitio
(e.g., ralpfall, temperature, etc.) change dramatically. ©
In spring of 1997, when the flood of the Red River of the North
pccured, all flood forecasts were within acceptable ranges except
in Grand Forks. We now focus on this one failure rather than t111)
several qther successes. In Fargo, we had severe weather ri ;
gauge failures, and crest reversions, but we had time to ad',ustvte X
:::::tweaﬂ‘lter-?atei changes. Grand Forks had little tgme tg
0 a situation t i
oy atior at overwhelmed them, as this was an un-
We must rely on the National Weather Service and the Flood
Forecast Center for reliable information. However, we must .
derstand or at least better understand the variables"assum tiol;lI:
and real value of their predictions. Society increa;ingly eI:(pects’

science to solve all problems. But not all problems are easily
solved, and answers are not always absolute. Today when serious
events are not accurately predicted, society seeks someone to
blame.

Could the city of Grand Forks have been saved from the disaster
if the forecasts had been absolutely correct? In my opinion, con-
tingency dikes, earlier evacuation, and loss control were options,
but they required difficult, unpopular decisions. Previous victo-
ries over floods gave a false sense of security. It would have been
difficult to construct emergency measures against a 56-foot crest
when dikes that were supposed to handle 52 feet failed at 51 feet.

Responsibility for protecting against disaster is a local one.
Predictions are but one tool, albeit one of the most important,
used by local officials along with political influence, historical re-
flection, acceptable loss, and other considerations.

In summary, we must support the scientists in gathering the
information to achieve the best predictions. We then must ques-
tion the predictions when life and property in our communities
are at risk. We can’t simply assume that the prediction is com-
pletely accurate without our own review. Predictions are based in
part on historical data. If an event significantly exceeds all pre-
vious levels, accurate predictions may be difficult. Blaming others
when failure occurs isn't enough. If we have done everything pos-
sible, we must accept the consequences—some events are beyond
our control. An elderly woman victimized by a flood summarized
this by saying, “Even if we lose the flood fight, you must feel that
we have done everything possible to be successful.”

.In recent years scientists have increased their ability to obse
asteroids and comets that potentially threaten the earth. In trhvi:
case, .the “event” is clear enough—possible extinction o.f life on
earth'lf a large asteroid slams into the planet. But public reaction t
the Q1scovery of asteroid 1997 XF11, and the associated predictr} .
tha't it could strike the earth on October 26, 2028, illustrates that 10}1
entists, as well as the public, can fall prey to ’misunderstand'sm-
Qlame for the misunderstanding can be apportioned among s on
jasts who hastily issued an erroneous prediction: the mediag Wcli?n};
jumped on the prediction because it was spectac;ular; and tl,le lel(l:)-

lic, which responded to the magni
W] agnitude of the potential
than its uncertainties or probabilities. P eent, rather

3. Weather forecasts afford decision makers the best opportunity to

understand prediction products. It is well worth repeating that in
the United States the National Weather Service issues more than 10

~million predictions every year to hundreds of millions of users. (In

contrast, we have seen less than a dozen scientifically legitimate
earthquake predictions.) This activity provides a basis of experience
from which users can learn, through trial and error, to understand
the meaning of the prediction products they receive. Of course, in
the case of weather prediction there s still room for confusion. Peo-
ple may fail to understand predictions even for routine events.
Murphy (1980) documents that when forecasters call for a 70 per-
cent chance of rain, decision'makers understand the probabilistic
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element of the forecast but do not know whether the rain has a 70

ercent ¢ i i
p hance of occurring at each point in the forecast area, or
]

whether 70 percent of the area is expected to receive rain with a 100

percent probability, and so on. E
, and - Even so, one of the im
Il)e;gggsaife \yeather plreglctlon is that decision makers includl;r?;ttal?s
» dre In general able to use probabilistic i i
products can have significant valltj1e. Vot nfomation, and such

. These examples illustrat
Is inherently problematic

diction, one must do .
! more than si
products, whether mor mply develop

€ precise (e.g., a forecast of a 49.1652-f;
. -fo
crest at East Grand Forks), more accurate (e.g., a forecast of ac;fgﬁ

crest ilisti
), Or more robust (e.g., a probabilistic distribution of various fore-
products are in many cases

decision making, and hence desired ou

| n tcomes. i
Slons, 1t is necessary to understand predi 2 procer, better dect-

ction as a process.

Prediction as a Process

The prediction process can be

ot pred thought of as three parallel decision

* Research. Includin
as forecasters’ jud
which go into the

g science, observations, modeling, etc., as well
gments gnd the organizationa] structuré—all of
production of predictions for decision makers
* Communication. Both the s ‘

tion—e.g., who says what to
what effect.

ending and receiving of informa-
whom, how is it said, and with

* Use. The incorporation of
making. Of course, decisions
tors other than predictions,

predictiye information into decision
are typically contingent on many fac-
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A robust conclusion of this book is that good decisions are more
likely to occur when all three activities of the prediction process are
functioning well—and research activity is often the least critical of the
three. Open communication and consideration of alternative policy
approaches can lead to successful decisions in the face of unsuccessful
prediction products, but the opposite is unlikely to occur (see chapter
14). Consider the following examples:

e The case of the Red River flood illustrates how a technically skillful
forecast that is miscommunicated or misused can result in costs
rather than benefits. The overall prediction process broke down in
several places. No one in the prediction process fully understood
the uncertainty associated with the prediction, hence little attention
was paid to communicating the uncertainty to decision makers, and
poor assumptions were made about how decision makers would
interpret and use the predictions. As a result poor decisions were
made. Given that that region will to some degree always depend on
flood forecasts, the situation can be improved in the future by
including local decision makers in the research activity in order to
develop more useful products (Pielke 1999). B}

e In the case of earthquake prediction, a focus on developing skillful
predictions of earthquakes in the Parkfield region of California
brought together seismologists, local officials, and emergency man-
agers with the original goal of preparing for a predicted earthquake.
A result was better communication among those groups and overall
improved preparation for future earthquakes. In this case, even
though the prediction product was a failure, the overall process
adapted to that failure and made decisions that enhanced aware-
ness, refocused attention on alternatives, and arguably reduced vul-
nerability to future earthquakes. (See box 18.5.)

¢ Global climate change seems to display attributes similar to the
early stages of earthquake prediction. Policy making focused on
prediction has run up against numerous political and technical
obstacles, while alternatives to prediction are becoming increas-
ingly visible. The prediction process will be said to work if it
addresses the goals of climate policy—i.e., if it reduces the impacts
of future climate changes on environment and society (Pielke
1998). More and better predictions are not a prerequisite for this
desirable outcome. '

o Nuclear waste disposal has also evolved from a situation in which
the development of skillful predictions played a central role into
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BOX 18.5

.IP}OII.Iser’s Perspective on Earthquake Prediction and Public
1cy

Shirley Mattingly, Emergency Management

As calamities go, earthquakes pose a special threat because the
really disastrous events occur infrequently. Earthquakes chal-
lenge those who would predict them and those who would re-
spond to predictions because uncertainty surrounds the science
and the. response and provides an excuse for no action.

P,redlctlons, per se, can disrupt life in a city at risk, and they
dox}t have to be valid or even scientifically based. The self-pro-
§1a1med clairvoyant Nostradamus predicted a devastating event
in May 1988 in the “new city,” assumed to be Los Angeles
Widespread publicity fed rumors, which led to near panic in oné
community. Hundreds of families took their children out of
thool 'and permanently left their homes, relocating to the rela-
tive seismic safety of Fresno or Oregon. I was disheartened that
earthquake drills at school were regarded as proof that the
corlrbung c_atastrophe was inevitable.

anic 1s not a good thing. But emergency manager 1d-
vantage of the public’s heightened awa%en?s,s of ea%thsq?ail;safo
explain the science and promote simple safety measures
Never‘Fhele§s, the Nostradamus “prediction” and similar incidents.
nggatlvely impact public policy makers’ regard for the predictive
science,

Even apparently legitimate scientific disagreements justify in-
action as the preferred policy option. A so-galled seierrul'lzttli?ﬁt:I;t
p_ostulated in 1994 by an official science working group was be-
leved t_o mean that destructive quakes were more likely to strike
the region in coming decades. Subsequently, earthquake insur-
ance rates quadrupled (Kerr 1988). Eventually, the deficit was de-
bunked and suddenly disappeared. But for four years Los
Angelenos thought that they faced either twice as many large
earthquakes as normal or one huge quake many times more pow-
erful than the last Big One. This incident didn’t improve policy-
makers’ regard for the predictive science, either.

Science is often foreign territory for politicians, and politics is
often foreign territory for scientists. Scientists and public policy
setters often don't even begin to speak the same language. They
generally have very different backgrounds, motivations, and
aims, and they work in different milieus. So communication does
not come naturally.

There's art and science in both predictions and politics. In my
experience, decision makers rely on input from people they trust,
people with whom they have a history. They like their advisors to
do their homework, define the problem, identify alternative ap-

- proaches, evaluate potential solutions, and find solid answers.
And they want advice that is clear and easy to understand. Then
they act based on what they've heard and on other factors we
don’t know about. While they are pragmatic, they can be swayed
by people with passionate beliefs.

Scientists and policy makers can help each other to under-
stand the environment that will receive—perhaps eagerly, per-
haps kicking and screaming—a prediction. They should collabo-
ratively decide how to communicate information, how to frame
it, and when to release it. Both should pursue good relationships
with the local media, even when there is little news, because if
the media are well informed, they'll do a better job of reporting
accurately when there is a story.

For local decision makers to take predictions seriously, they
must have faith in the prediction and the predictor. Scientists
must have credibility with peers and with the people they hope
to influence into action. That requires sustained dialogue and

~ mutual trust. The responsibility lies with both.

I remember one highly respected seismologist coming down-
town to Los Angeles’ city hall, more than once, to discuss his re-
search findings with any public official who would listen. He
came on his own initiative. He moved us, not immediately, but
over time. He changed public officials’ perceptions and influ-
enced public policy. I saw it happen, and ever since, I've been
trying to make it happen again, anytime and anywhere that
anyone will listen.




one in which decision making focuses on actions that can achieve
desirable societal outcomes under various possible futures. Initially,
the success of the repository seemed to be entirely dependent on
predicting the hydrologic system at the disposal site over the next
ten thousand years. Unanticipated complexities associated with
this natural system led to decreased emphasis on prediction and
increased emphasis on designing an engineered containment sys-
tem. However, while the behavior of this engineered system is likely
to be much more predictable than that of the hydrologic system, it
will have its own problems, and uncertainty cannot be entirely
Zlgl?ﬁ:t;géigggsar;;ltgitxg; riuch as monitorgd', retrievable stor-
’ odate the remaining uncertainties,

A User’s Guide to Prediction and Decision Making

When to Rely on Prediction Products

The case studies in this volume provide insight into when decision mak-

ers sh01.11d look to pre:diction products and when they should look to
a}ternatwe sources of xr_lformation to help make decisions.2 The condi-
tions under which predictions should be relied on are easy to lay out in

principle but may be difficut to apply in i inci i
tions should be relied on when: PPV practice. In principle, predic-

1. Predictive skill is known.

2. Decision makers have exp

; erience with u ; .
predictions. nderstanding and using

3. The characteristic time of the predicted event is short.
4. There are limited alternatives.
5. The outcomes of various courses of action

of well-constrained uncertainties (e.g., the
false positives and false negatives).

are understood in terms
likelihood and effects of

Conversely, alternatives to prediction should be sought when:
1. Skill is low or unknown.,

2. Little experience exists with

using the predictions i
phenomena in question, P or with the

3. The characteristic time is long.
4. Alternatives are available,

5. The outcomes of alternative decisions are highly uncertain.

Incorporating these principles into real-world decision processes

may be difficult. Organizations often choose 1o gathet mote \:\ﬁm-
mation (even if it is useless) rather than take action (e.g., Feldman

itical i i “the basing of policy on
and March 1981). Political incentives favor “t e f policy.
supposedly neutral forecasts [that allow] decx.smn making msntgx-
tions to assume a cloak of objectivity” (Rol?mson 19§2, P 24f ).
Rejecting that cloak in favor of the hair shirt of realism requires

decision makers to:
1. Be flexible.

2. Learn from experience.

3. Search for alternatives.

4. Hedge their bets. -

5. Evaluate progress with respect to goals.

6. Evaluate predictive skill with respect to decisions.
7.}Focus on good decisions, not just good predictions.

Each of these guidelines might seem obvious or common sensical—but
as the cases here dramatically show, they are often neglected. Overcom-
ing this neglect requires decision makers to change their focus—from
predictions as a product to predictions as a process.

Creating a Successful Prediction Process

If society is to benefit from the predictive information products of
the earth sciences, scientists and decision makers should together
pay attention to the broad process in which predictions are made. In
particular, participants in the prediction process must take action in
six areas.

1. Above all, users of predictions, along with other stakeholders in
the prediction process, must question predictions. For this ques-
tioning to be effective, predictions should be as transparent as pos-
sible to the user. In particular, assumptions, model limitations, and
weaknesses in input data should be forthrightly discussed. Institu-
tional motives must be questioned and revealed. Especially in cases
where personal experience may be limited (such as asteroid
impacts and global warming), both scientific rigor and public con-
fidence in the validity of the prediction will benefit from this open
questioning process. “Black boxes,” i.e., closed processes, generate
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public distrust, especially when a prediction can stimulate deci-
sions that create winners and losers. They can also foster compla-
cency among those doing the predicting. Even so, because of
limited experience, many types of predictions will never be under-
stood by decision makers in the way that weather predictions are
understood. Table 18.1 lists seven general questions that can be

asked about predictions and gives accompanying guidelines for
seeking answers.

2. If users are to question predictions, then the prediction process must
be open to external scrutiny. This means that policy makers must give
procedural aspects of democratic openness, evaluation, and account-
ability the same priority as issues that may seem more directly con-
nected to policy goals (e.g., funding predictive research or establishing
environmental standards). Openness is important for many reasons,
but perhaps the most interesting and least obvious is that the technical
products of prediction are likely to be “better”—both more robust sci-
entifically and more effectively integrated into the decision process—

when predictive research is subjected to the tough love of democratic
discourse. Scientists may reasonably fear that such attention could
lead to politicization of research agendas, but many of our case histo-
ries show the opposite—that, in the absence of public openness, pre-
dictive science tends to converge on results that support the tacit
assumptions of the administering organizations or policy regimes (see
chapter 17). External scrutiny helps to reinvigorate the healthy skep-
ticism that is supposed to be a part of the scientific process. Consider
scientists working on the Yucca Mountain nuclear waste repository ]
who converged on a predictive product that was consistent with their ]
institutional interests. The presence of two oversight bodies provided
the additional, outside scrutiny necessary to expose the technical
flaws in those predictions. Similarly, Moran (chapter 9) shows that, in
the effort to predict the environmental effects of mines, informed pub-
lic scrutiny of environmental impact statements is necessary to ensure
that significant uncertainties are brought to light. Pilkey (chapter 8)
describes a failed process for making decisions about beach nourish-
ment that is, perhaps predictably, neither open nor subject to evalua-
tion. And as Gautier (chapter 11) explains, when the U.S. Geological
Survey opened up its oil and gas assessment program to a range of
interested customers, it improved both its own technical capability,
and the utility of its prediction products.

3. In this same context of openness, predictions must be generated
primarily with the needs of the user in mind. Television weather

oles played by
them to effective sotution.

table in the particular context.

jon.

the impacts of successful ones.
y a function of its accuracy.

analysis, experience, or reality.
are not necessaril;

redictions.

r from what predictors intend and may lead to unexpected responses.
f predictions.

are not (a) accuracy, (b) certainty, (c) relevancy, or (d) reality.
and their potential uses in society are diverse.

computers don't kill predictions, assumptions do.

Guidelines to Follow in Seeking Answers
1d equally valid p!

ntific validity.

Recognize that different approaches can yie

f prediction,

i nflicts of interest among those soliciting and making predictior}s.
Dot who be o d wher? the prediction is made. Who are the winners and losers?

Pay attention to the ethical issues raised by the release ¢

of impacts on society.
can be a significant event.

1f
lways uncertain; assess the level of uncertainty accep

f inadequate predictions relative to
a substitute for data collection,

redictions may diffe

fits of a prediction

d prediction
be more effective at bringing problems to attention than forcing

itse

focus on prediction (as well as the choice of the specific predictive technique) will constrain
Recognize that the prediction i

future policy altematives. . .
Consider alternative societal impacts that might result from the prediction (including the different r

accuracy.
base may be inadequate for a given type of pr i

prediction). )
Evaluate past predictions in te:
uncertainties.

proceeds.

e o edictions
Consider alternatives to prediction for achieving the purpose. Maintain flexibility of the system as work on pr
Recognize that a choice to

Predictions should be communicated (a) in terms of their implications for societal response, and (b) in terms of their

Recognize that computers hide assurptions;
Make the prediction methodology as transparent as possible.

Recognize that the science

Recognize that there are many types o

Evaluate past predictions in terms of scie

Recognize that quantification an

Specify the purposes of the prediction.
If possible, assess the impacts o
Recognize that prediction is not
Recognize that predictions are al
Beware of precision without
Recognize that perceptions of p
Recognize that the societal bene
Understand who becomes empowere

)?

Questioning Predictions.

Questions to Ask

What factors can influence how Recognize that prediction may

How does the process of devel-
oping predictions influence the
What are the scientific limita-
tions and uncertainties of the
a prediction is used by society?

prediction?
generation and dissemination

What are the direct societal
impacts of the prediction?
What political and ethical con-
siderations are raised by the
of a prediction?

How should predictions be
communicated in society?

What are the policy goals (i.e.,
policy process (and vice versa

outcomes) that prediction is
intended to achieve?

TABLE 18.1



- CONCLUSION

pr.edlctlons focus primarily on temperature, precipitation, and
wind, rat.her than temperature gradients, behavior of aerosol; and
barometric pressure. Scientists must understand the broader ’oals
of the process, not the narrow goals of science; they must listgn t
stake}}old'ers. Stakeholders must work closely a,nd persistent] witﬁ
the scientists to communicate their needs and problems. To gnsure
useful prediction products, prediction research programé should be
_desxgned from their inception to include mechanisms of formal and
informal, regular and frequent dialogue between prediction
researchers and prediction users. More communication between
producers and users of predictions always benefits the prediction
process ax?d the quest for good decisions, even if it introduces inef
ficiencies in the generation of prediction products. -

4. Uncer'tain'ties must be clearly understood and articulated b
the.sc1ent1sts, so that users understand their implications. If scis-l
entists do not understand the uncertainties—which is of:cen the
case—tl}ey must say so. Failure to understand and articulate
upcertamUes contributes to poor decisions that undermine rela-
tions among scientists and decision makers. But merely under-
standing 'and articulating the uncertainties does not mean that
the. predictions will be useful decision tools. For example, if
pohcy {nakers truly understood the uncertainties associated v;ith
predictions of global climate change, they might decide that

strategies for action should .
Pielke 1998). not depend only on predictions (e.g,,

5. D.ecz‘s?on makers must realize that predictions themselves can be
significant events. Predictions can stimulate considerable action
that can confer benefits or impose costs. False earthquake predic-
tions yaYe stimulated better earthquake preparedness, while false
a§t§r01d Impact predictions have fueled needless alarn’l More si
mﬁpantly, predictions can commit society to one cours;e of actiogr;
while foreclosing other options. The prediction of global warmin
for exa.mple, has mobilized an international effort to reduce anthrg-’
pogenic CO, emissions. Some would argue that such action is nec-
essary to forestall disaster; others, that it is a fruitless and potentiall
dangerous distraction from more effective approaches to globasl,
environmental protection. In either case, the prediction itself has
bfeen a m'uch greater catalyst for decision making than any unam-
biguous impact of global warming. A healthy prediction process
depends on the recognition that predictions are themselves events.
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6. Finally, the quest for alternatives to prediction must be institu-
tionalized in the prediction process, especially when characteristic
times are long, policy regimes are strong, and decision makers have
limited (or no) experience with the predicted phenomenon. Alter-
natives to prediction should be debated and evaluated (and perhaps
tried on a pilot basis) at the earliest stages of the prediction process.
As our case studies show, alternatives are in fact often available.
Rather than trying to predict the impacts of hard-rock pit mines on
water quality as a basis for environmental regulation, spreading risk
through bonding or other types of insurance might be preferable.
Rather than depending on predictions of acid rain mitigation to
design a regulatory command-and-control system (see chapter 12),
the U.S. Congress actually implemented a system of tradable emis-
sions permits that did not depend on predictive earth science.

In Conclusion: Question Predictions!

The emergence of an environmental challenge appears to stimulate an
almost automatic call for scientific prediction as the first step toward
meeting the challenge. The possible sources of this reaction range from
the desire to find an objective source of information that can dictate
action while protecting against political backlash, to an unquestioning
modern confidence in our technological ability to control the future
(e.g., Heilbroner 1959). Whatever the cause, the scientific establishment
of the United States focuses a not inconsiderable proportion of its intel-
lectual energy and technological wherewithal on predicting the future of
nature in order to promote a variety of desired societal outcomes.
Considered as a whole, the cases in this book portray a pervasive and
energetic societal activity—a prediction enterprise supported by sub-
stantial federal and private funds—that is unified by shared assumptions
about the necessity and value of scientific foresight in environmental
decision making, and rooted in a strong belief in predictability itself.
The recognition that such an enterprise exists is a crucial first step
toward fulfilling the goal set out at the beginning of this book: to
improve environmental decision making. Only when the prediction
enterprise. is recognized can critical scrutiny begin.
Predictions—information products—lie at the heart of this enter-
prise. They are its rationale, its currency, its legitimacy. For this reason,
any effort to assess the prediction enterprise must openly and persis-
tently question predictions. This questioning has to occur on two levels
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simultaneously. Of course it is important to question accuracy, uncer-
tainty, and predictability. But we have seen that prediction products
mean little by themselves. Predictions must also be questioned in the
context—political, cultural, economic, environmental—of the larger
enterprise. Given a particular environmental problem, we need to ask:
How does the enterprise operate in this case? Who are the players, and
how is power, legitimacy, and participation apportioned among them?
What conflicting values are hidden by debate over technical matters?
What criteria should be used for judging the output of the enterprise and
the outcomes of that output?

Technically “good” predictions used in a healthy decision environ-
ment can of course facilitate better decisions, as illustrated by the case of
weather predictions—our only candidate for the prediction hall of fame,
But the “goodness” of weather predictions arises not just from their
accuracy and skill, but also from the capacity of society to make effec-
tive use of them. A pretty good flood prediction did not forestall disaster
in Grand Forks, North Dakota, and a pretty bad earthquake prediction
did not prevent better earthquake preparedness in central and Southern
California. These types of outcomes are paradoxical or confusing only if
one persists in viewing predictions as simple information products.
When the whole enterprise is seen, sense and order begin to emerge.

The central issue is an uncertain future. The cause of this uncertainty
is a dynamic planet, an evolving society, and the interaction between the
two. Scientific prediction is one tool for coping with this uncertainty—
a tool with some promise, some problems, and much unacknowledged
complexity, but only one tool among many. Given the uneven perfor-
mance and our lack of understanding of the prediction enterprise, a
good argument can be made for the following: First, our dependence on
scientific prediction has become uncritical, and at times excessive and
counterproductive. Second, we need to be more careful about how and
when to make prediction a central activity in addressing environmental
problems. Third, as soon as new environmental problems begin to com-
mand public attention, we need to resist the urge to immediately pre-
scribe a predictive approach and should consider instead a range of
possible actions. And finally, we should worry less about making good
predictions and more about making good decisions.

1. As contrasted with narrow or parochial interests, which may conflict with
common interests.
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2. There are other such “user’s guides” for understanding precllictions. One
notable example, which focuses on economic and technological forecasts,
is Armstrong (1999). Also see Nicholls (1999).
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