

Does Water Flow Downhill or Towards Money? Lessons from the Western Water Assessment

CIRES Center for Science Technology Policy Research Science, Technology and Decision Making Symposium February 25, 2005

Brad Udall
Director
Western Water Assessment
Bradley.Udall@colorado.edu

Western Water Assessment http://sciencepolicy.colorado/wwa

Downhill or Towards Money?

Overview of Talk

Stresses on Colorado Water Supply

Basic Colorado Water Facts and a New Water Supply Era

The NOAA RISA Program

WWA in General and in Specifics

Experimental Forecasts

Streamflow Reconstructions

Future Work Foci

Stress: Population Growth

Colorado Population in Millions

Stress: Palmer Drought Index- % of area in severe drought

Western U.S. 1895-2004

Stress: 50-Year Climate Trends

Slight
Wet
Trend
Matches
El Nino
Cycle

Western U.S. Mostly Warmer and Wetter Since 1950

"Water 2025" - Future Supply Crises

Note: There is an underlying assumption of a statistically stationary climate.

Basic Facts: Municipal vs. Agricultural Water Use in

Colorado

Table ES-1 Municipal	& Industrial	Gross	Water	Demand i	in
2000 and 2020					

Arkansas 256,900 354,900 98,000 389 Colorado 74,100 136,000 61,900 849 Dolores/ 23,600 42,400 18,800 809 San Juan/ San Miguel 729 Gunnison 20,600 35,500 14,900 729 North Platte 500 600 100 209 Rio Grande 17,400 21,700 4,300 259 South Platte 772,400 1,182,100 409,700 539 Yampa/White/ 29,400 51,700 22,300 769 Green 769 769 769 769	Basin	Estimated Water Demand in 2000 (AF)	Projected Water Demand with Level 1 Conservation in 2030 (AF)	Increase in Water Demand (AF)	Increase in Water Demand (%)
Colorado 74,100 136,000 61,900 849 Dolores/ San Juan/ San Miguel 23,600 42,400 18,800 809 Gunnison 20,600 35,500 14,900 729 North Platte 500 600 100 209 Rio Grande 17,400 21,700 4,300 259 South Platte 772,400 1,182,100 409,700 539 Yampa/White/ Green 29,400 51,700 22,300 769					38%
Dolores/ San Juan/ San Miguel 23,600 42,400 18,800 80% San Juan/ San Miguel 20,600 35,500 14,900 72% North Platte 500 600 100 20% Rio Grande 17,400 21,700 4,300 25% South Platte 772,400 1,182,100 409,700 53% Yampa/White/ Green 29,400 51,700 22,300 76%					84%
Gunnison 20,600 35,500 14,900 72% North Platte 500 600 100 20% Rio Grande 17,400 21,700 4,300 25% South Platte 772,400 1,182,100 409,700 53% Yampa/White/ 29,400 51,700 22,300 76% Green 76% 76% 76% 76%	San Juan/	,			80%
Rio Grande 17,400 21,700 4,300 25% South Platte 772,400 1,182,100 409,700 53% Yampa/White/ Green 29,400 51,700 22,300 76%		20,600	35,500	14,900	72%
South Platte 772,400 1,182,100 409,700 539 Yampa/White/ Green 29,400 51,700 22,300 769	North Platte	500	600	100	20%
Yampa/White/ 29,400 51,700 22,300 769 Green	Rio Grande	17,400	21,700	4,300	25%
Green	South Platte	772,400	1,182,100	409,700	53%
		29,400	51,700	22,300	76%
TOTAL 1,194,900 1,824,900 630,000 53%	TOTAL	1,194,900	1,824,900	630,000	53%

M&I = 1.2 maf/year 2000, 1.8 maf/year 2030

Table ES-2 Irrigated Acres by Basin					
		Average Total			
	Estimated	Diversions			
Basin	Irrigated Acres	(AF)			
Arkansas	538,100	1,769,900			
Colorado	237,700	1,986,900			
Dolores/San Juan	255,000	902,200			
Gunnison	263,500	1,736,100			
North Platte	115,700	396,900			
Rio Grande	632,700	1,619,000			
South Platte	1,003,500	2,5 <u>45.500</u>			
Yampa/White/Green	118,400	652,000			
TOTAL	3,164,600	11,605,000			

Ag = 11.6 maf/year 2000

Figure ES-6 Relative Proportions of Agricultural, M&I, and SSI Gross Water Use in 2030

Source: State Water Supply Initiative

A Changing Water Supply Paradigm

- Fewer Supply-side options 6 maf in Storage Sites Already
- Compacts, Decrees, ESA (Platte, Rio Grande, Colorado) Limit Water Availability
- Conservation reduces buffers 'demand hardening'
- Water Law Constraints
- Water Quality an Increasing Concern
- Very Different Operational Needs Ag vs. municipal
- Water is not a commodity, aspects of public good, externalities
- Environment and Recreational Water Needs 'beneficial use' is changing
- Climate may not be "Stationary"
- Local Planning May no longer be enough
- New Demand-side and Supply-side Techniques...
 - Land Fallowing, Water Banks, Reverse Auctions, Reuse,
 Interruptible Supply Contracts, Conservation, Water Rates
- Focal Point on Colorado River Basin from 0 to 1 maf left to develop

What is the Western Water Assessment?

Public Mission:

The mission of the Western Water Assessment is to identify and characterize regional vulnerabilities to climate variability and change,and,

to develop information, products and processes to assist waterresource decision-makers throughout the Intermountain West.

Why Western Water Assessment?

Private Mission:

Help NOAA Consider and Implement Future "Climate Services", an analog to the National Weather Service but Different...

Existing NOAA Climate-centered Activities...

River Forecast Centers – Volumetric Streamflow Forecasts Climate Prediction Center – Long-lead T&P Forecasts Climate Focal Points – NWS Regional Personnel Climate Services Division

Western Water Assessment one of 8 Similar Regional Integrated Sciences and Assessments ("RISA") Programs.

Regional Integrated Sciences and Assessments ("RISA") History, Goals and Objectives

- Arose from NOAA Office of Global Programs discussions ca. 1995
- Characterize the state of knowledge of climate variations and changes, and their social, economic, and ecological interactions, impacts, and projections at appropriate scales of interest within a region
- Assess regional and local resources, capacity, and decision-support dialogs needed in responding to environmental variability and change
- Identify knowledge gaps in selected critical climate-environment-society problems in a region and develop experimental decision support products and services to bridge these gaps as needed
- Carry out research focused on realizing the benefits of integrated knowledge and forecasts in different contexts and provide an informed basis for place-based decision support and services.

Source: Pulwarty, NOAA OGP

Who is WWA?

(A Cast of Thousands...)

Principal Investigators: Susan Avery, Randy Dole

University of Colorado Scientists

Legal and Policy – Doug Kenney, Bobbie Klein, Roger Pielke, Jr.

Snow and Hydrology – Martyn Clark, Balaji Rajagopalan

Water Quality – Jim Saunders

Economics – Chuck Howe, Chris Goemans

NOAA-CIRES Climate Diagnostics Center Scientists

Policy – Andrea Ray, Roger Pulwarty, Jessica Lowrey

Climatologists – Klaus Wolter

Snow Scientists – Shaleen Jain, Jessica Lundquist

Paleoclimatologists – Connie Woodhouse, Robin Webb, Jeff Lukas

Colorado State University Scientists

John MacKenzie, Reagan Waskom, Dan Smith, John Wilkin-Wells

WWA Activity Matrix...

RISA Mean		RISA Means,	Current				
	uation Matrix 1 /WA Activities	Links to Decision Makers	Links to NOAA Operations	Integrated Research	Synthesis Research	Self Evaluation	Training New Leaders
र्	Assessments						
RISA Ends	Information, Products & Processes						

		Temporal Scale			
Evaluation Matrix 2 for WWA Activities		Paleo	Seasonal to Interannual	Decadal	Global Change
	Assessments				
RISA Ends	Information, Products & Processes				

Stakeholder Research Partners

- Municipal
 - Denver Water Department M&I
- Combined Ag and M&I
 - Northern Colorado Water Conservancy District Ag, M&I
- Federal
 - United States Bureau of Reclamation Ag, M&I
- Non-governmental
 - Ditch and Reservoir Company Alliance Ag
- State Chartered Planning Entities
 - Colorado River Water Conservation District
 - Colorado Water Conservation Board

Some Current Projects...

- 1. South Platte Regional Assessment Tool
- 2. Streamflow Reconstructions using Tree-Rings**
- 3. Climate Services Clearinghouse
- 4. Improved "Week 2" Streamflow Forecasts
- 5. Seasonal Forecasts for Drought Task Force**
- 6. DARCA Use of Climate Forecasts
- 7. Intermountain West Climate Outlook

Hot off the Press: June 8-10, 2005 Conference: "Hard Times on the Colorado River: Drought, Growth and the Future of the Compact", CU Law School, Boulder.

NOAA Climate Prediction Center ("CPC") Seasonal Precipitation and Temperature Outlooks

Predicting Climate Variability in Colorado – ENSO–Based Experimental Seasonal Forecasts

Seasonal PRECIP for Front Range Cities (GREEN), North-Central (RED) and San Juan (BLACK) Mountains, and the Arkansas Valley (PURPLE)

Source: Wolter Website, 2004

http://www.cdc.noaa.gov/people/klaus.wolter/SWcasts/index.html

Sample Experimental Forecast

- 1. Current status of the El Niño/Southern Oscillation (ENSO) phenomenon and prospects for the next six to nine n
- · 2. Regional climate variability and El Niño composites
- 3. Most recent Climate Prediction Center forecasts for February through June 2005
- · 4. Most recent experimental forecasts for January through June 2005
- . 5. Discussion of forecasts
- . 6. Executive summary

Outline for latest forecast webpage (updated on January February 24th, 2005)

This webpage consists of six parts:

1. Status and Outlook for ENSO (El Niño/Southern Oscillation), the most important global climate variability factor on

6. Executive summary (updated on January 2)

- 1. The 2004-05 El Niño event continues to limp along, with large-scale SST anomalies that barely exceed 1C (2F). Neverthe precipitation anomalies have been consistent with typical El Niño-associations (for instance, a failed summer monsoon in In in the southwestern (northwestern) U.S.).
- 3. Afternive summary or in the fall of calanda (mastern Calanda and canada and another in the fall) and anarranal to

The most recent forecasts are based on data through December 2004. This website will remain online until further notice

EXPERIMENTAL CDC JAN-MAR 2005 PRECIPITATION FORECAST (issued: January 18, 2005)

Internet

Lessons from Experimental Regional Forecasts

- CPC National Forecasts lack spatial scale needed by water managers.
- Active (email) contact provides new forecast reminder.
- Experimental Forecast has multiple sections map, discussion, summary, skill.
- CPC "Equal Chances" forecast confusing.
- 2002 Prompted interest and attention.

Blue River at Dillon Streamflow Reconstruction

http://www.ngdc.noaa.gov/paleo/streamflow/background.html

Reconstructed Upper Colorado River Streamflow, 1437-2002 smoothed with a 5-weight filter

The early 20th century wet period does not appear matched in prior centuries. However, drought similar to the 1950s drought have occurred.

Source: Woodhouse, 2003

Source: Woodhouse, 2003

Lessons from Streamflow Reconstructions

- Take advantage of event-related windows of opportunity. Tree-ring data could answer the question that gage data could not: how rare was this event?
- Collaborative work with decision makers is essential. Sustained communication allowed us to explore the development of reconstructions and analyses useful for planning and management.
- Be open willing to address user-based questions. Updating tree-ring collections from 1999 to 2002 or ensemble reconstructions would not have been undertaken otherwise.
- Do not wait to develop collaborative partnerships with decision makers until there is an impeding crisis and they are too busy to figure out how new climate information might be of use.

Future Work Foci

Continued Product Development Paleo, Seasonal, Streamflows, Others

Continued Assessments
SPRAT, Demand, Others

New Initiatives

Global Change Work with Local Provider Colorado River Compact NOAA Climate Services Feedback

Lake Powell: Current vs. 1995 Severe Sustained Drought Study

Lake Powell Contents
SSD Drought vs. Current Conditions

