Stakeholder Engagement and Governance of Emerging Biotechnologies

Center for Science and Technology Policy Research University of Colorado, Boulder | January 29, 2020

GÉS CENTER

Associate Professor of Science, Policy, and Society Dept. of Forestry and Environmental Resources Genetic Engineering and Society Center North Carolina State University

Genetic Engineering and Society Center

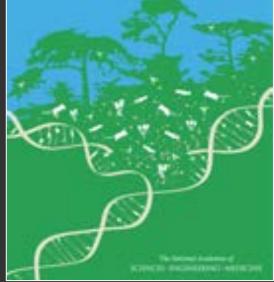
Integrating scientific knowledge and public values in shaping the futures of biotechnology

DemocracyExpertise ExpertiseDemocracy DemocracyExpertise ExpertiseDemocracy DemocracyExpertise

nas-sites.org/

gene-drives

The National Academies of


> "Public engagement cannot be an afterthought."

SCIENCE

ENGINEER

MEDICIN

Gene Drives on the Horizon Advancing Science, Specializing Generation, and Aligning Transich with Public Values

"The outcomes of engagement may be **as crucial as the scientific outcomes** to decisions about whether to release a gene-drive modified organism into the environment."

Defining Engagement

"Seeking and facilitating the sharing and exchange of knowledge, perspectives, and preferences between or among groups who often have differences in expertise, power, and values"

Publics

Groups of people who contribute to democratic decision-making, but may lack direct connection to gene drives

Stakeholders

People with direct professional or personal interests in gene drives

Communities

Groups of people who live in or near candidate release sites for gene drive organisms

Gene Drives on the Horize Annual Sector Sect

Motivations for Engagement

- Local knowledge
- Principles of justice
 - Transparency
 - Informed consent
- Opportunities for mutual learning
- Building of trust

udsu-strath.com

Dps.mn.gov/divisions/ojp

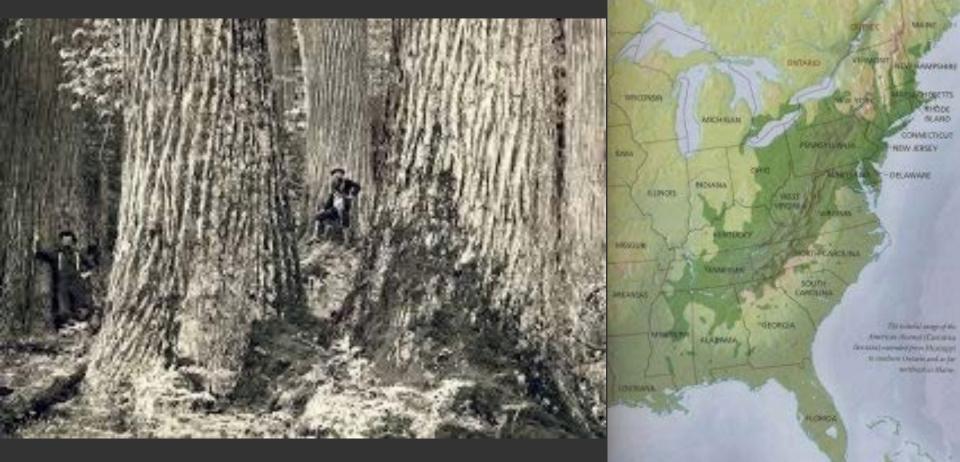
Challenges of Engagement

- Who should be engaged?
 What are the goals of engagement?
 When should engagement occur?
 How can cultural differences among those involved in engagement be recognized and respected in ways that enhance deliberation?
 What are potential triggers for polarization?
 - How should the results of engagement feed into practical and formal **decision making** about research and technological deployment?

(NASEM, 2016)

Typology of Public Engagement

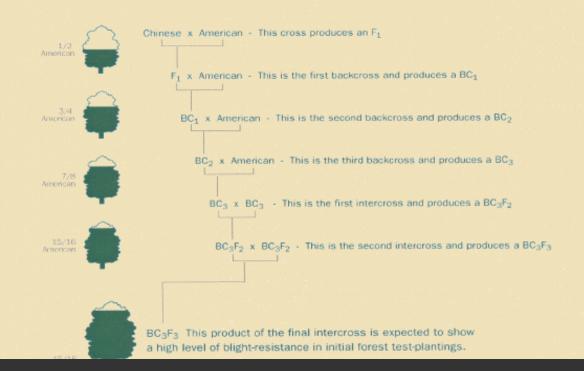
Type of Engagement	Information	Flow	
Public Communication	Sponsor	\rightarrow	Public Representative
Public Consultation	Sponsor	÷	Public Representative
Public Participation	Sponsor	\leftrightarrow	Public Representative


Rowe, G., & Frewer, L. J. (2005). A Typology of Public Engagement Mechanisms. *Science, Technology and Human Values*, 30(2), p. 255.

(Jacobsen, 2019)

THE MOST CONTROVERSIAL TREE IN THE WORLD

Is the genetically engineered chestnut tree an act of ecological restoration or a threat to wild forests?



With each cross, additional American chestnut characteristics are regained. Only at the final cross, however, does blight resistance approach that of the Chinese parent.

State University of New York College of Environmental Science and Forestry

STAKEHOLDER WORKSHOP

Biotechnology, the American Chestnut Tree, and Public Engagement

North Carolina State University April 25-26, 2018

NSF (SES-1632670) "Responsible Innovation with Genetically Modified American Chestnut Trees."

Motivations

- Stakeholders + innovators
- Expand beyond "upstream"

Innovations

- Interests and values
- Decision phases:
 - Research and development
 - Regulatory review
 - Deployment, management, and monitoring
- Engagement scenarios

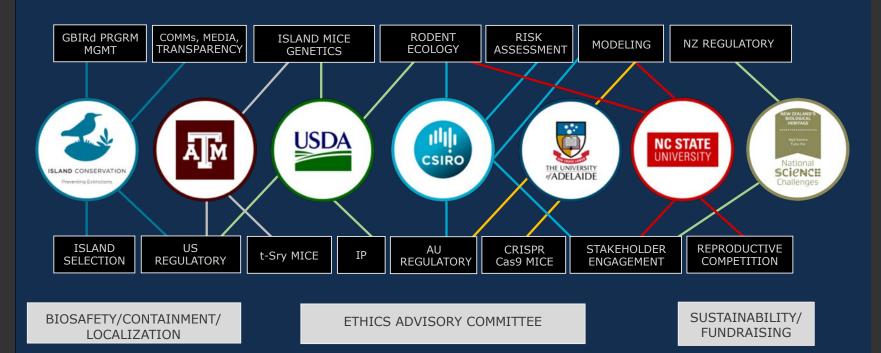
Biotechnology, the American Chestnut Tree, and Public Engagement **Workshop Report**

Principal Investigators Jason A. Delborne, Ph.D. Andrew R. Binder, Ph.D. Louie Rivers, Ph.D.

Research Team

Jessica Cavin Barnes, Ph.D. Katie Barnhill-Dilling, Ph.D. Dalton George, M.S. Adam Kokotovich, Ph.D. Jayce Sudweeks, M.S.

go.ncsu.edu/ges-chestnut-report


GENETIC BIOCONTROL

GBIRd

https://www.geneticbiocontrol.org/

Genetic Biocontrol of Invasive Rodents

https://research.ncsu.edu/ges/2019/02/report-gene-drive-landscape/

Consortium for Science

Exploring Stakeholder Perspectives on the Development of a Gene Drive Mouse for Biodiversity Protection on Islands

Summary Report of Stakeholder Interviews

KEYSTON

GÊS

CENTER

NC STATE

UNIVERSITY

Table of Contents

Executive Summary

- 1. <u>Introduction</u>
 - 1a. <u>Gene Drives and Engagement</u>1b. The DARPA Safe Genes Program
 - Methodology
 - 2a. Online Landscape Analysis
 - 2b. Identification of Interviewees and Development of Interview Questions
 - 2c. <u>Conducting interviews and Analyzing Results</u>

3.

2.

- Summary Results of the Landscape Analysis and Stakeholder Interviews
 - 3a. Participant Attitudes
 - 3b. Benefits and Risks
 - 3c. Scenarios for gene drive use for rodent eradication
 - 3d. Sources of Trustworthy Information
 - 3e. Engagement experience and perspectives
 - 3f. Governance Frameworks

4. Conclusions and Recommendations

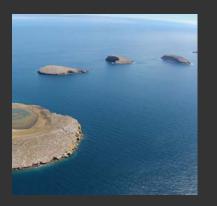
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Defense Advanced Research Projects Agency > Program Information

Safe Genes

Exploring Stakeholder Perspectives on the Development of a Gene Drive Mouse for Biodiversity Protection on Islands

Stakeholder Workshop | March 7-8, 2019 North Carolina State University | Hunt Library | Raleigh, NC



Participants

- Evolutionary biologists
- Invasive species experts
- Ethicists
- Mouse biologists
- Conservation NGOs
- Animal welfare experts
- Wildlife biologists
- Biotech policy experts
- Population geneticists
- Population modelers

Discussions across scales of research

- Laboratory Gene drive mechanisms Control methods
- Simulated natural environments
- Field trial risk assessment
- Island selection
- Community engagement

Island Selection Criteria	Island A	Island B	Island C	Island D
Size	5 ha	10 ha	100 ha	400 ha
Distance from mainland	10 km	1000 km	1 km	100 km
Presence of native mice	No	Yes	No	Yes
Human activity on island	Small-scale Eco-tourism	Lighthouse	Research Station	Indigenous agriculture
Geography	Sandy beaches		Steep Cliffs	
Accessibility - Public	Yes	Yes	No	No
		flight to landing	10 min boat ride, with crane	
Accessibility - Research team	1 hr boat ride	strip	access	1 day boat ride
Regulatory Oversight	U.S.	AU	US	AU
		Petrochemical	Government (Fish &	Tribal government, Federal
Number of land managers involved	Wealthy Conservationist	Company	Wildlife)	government
Knowledge of invasive mouse population				
(behavior, genetics, ecology)	N/A	1 sampling event	20 years of studies	1 year of study
Livestock & other animals	None	feral goats	None	llamas, pigs, chickens
Prior eradication efforts	Succeeded in 2009	historical baiting around barracks	None	None
Non-targets of concern	None	native mouse	endangered raptor	None
Presence of mus musculus	No, would be introduced	Yes	Yes	Yes
Feasibility of eradication with toxicants	Highly feasible	Feasible	Unclear	Difficult
Organisms threatened by mice	bat spp that is rebounding	an extirpated lizard that could be reintroduced	several endangered birds	Mice spread human disease as a vector for tick-borne illness



Lessons for engagement

- Enthusiasm for "upstream" engagement
- Appreciation for dialogue with "uncommitted developers"
- Scenarios: integration of facts and values, tradeoffs, priorities
- Concerns:
 - discussions of technical options without safety studies
 - focus on new tools may undermine existing strategies
 - working for public acceptance vs. being an "honest broker"

Consortium for Science Policy & Outcomes

Report available at the GES Center Website

GÉS

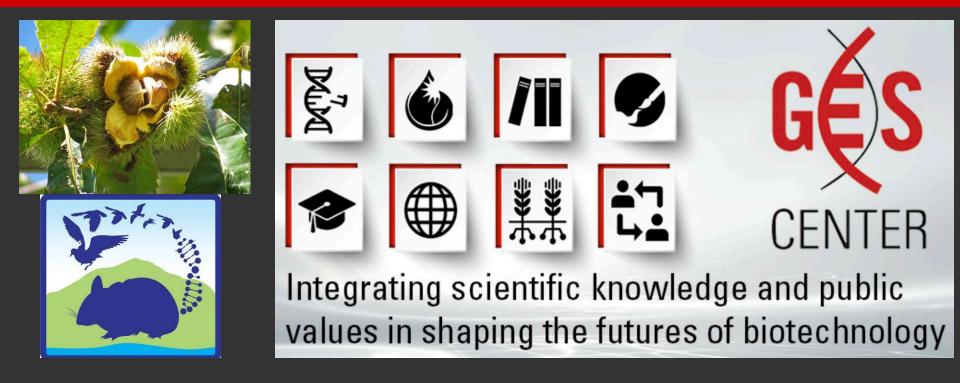
CENTER

J. Shapiro

J. Delborne

https://research.ncsu.edu/ges/research/ biodiversity-and-gene-drive-mice/ Exploring Stakeholder Perspectives on the Development of a Gene Drive Mouse for Biodiversity Protection on Islands

> Workshop Report June 2019


> > KEYSTOI

NC STATE

LINIVERSITY

GÉS

CENTER

Jason A. Delborne | <u>Jason_Delborne@ncsu.edu</u> | @jasondelborne

Dept. of Forestry and Environmental Resources | Genetic Engineering and Society Center