CLIMATE SMART FARMING IN ÁSIA *Measurements, implementation strategy & challenges*

KRITEE

Senior Scientist, International Climate, Environmental Defense Fund (With Fair Climate Network)

Email: kritee@edf.org, Twitter: @KriteeKanko

ENVIRONMENTAL DEFENSE FUND

- A non-profit founded in 1967
- Driven by science, economic & legal analysis
- 500 employees and >750,000 members
- Main areas of focus:
 - Climate and Energy
 - Ecosystems
 - Oceans
 - Health

WHERE WE WORK ON AGRICULTURE

FEEDING 9 BILLION IN 2050 Long term nutritional security

http://ccafs.cgiar.org/bigfacts2014/#

FEEDING 9 BILLION : YIELDS

Projected necessary vs real trends (2.4% vs 0.2-0.7%)

Yield Trends Are Insufficient to Double Global Crop Production by 2050

Ray DK, Mueller ND, West PC, Foley JA (2013). PLoS ONE

EFFECT OF CLIMATE ON AGRICULTURE *Limits of adaptation practices*

- 40% yield decrease → changes associated with 2°C local temp increase
- Droughts, floods, salt-water intrusion, weeds
- Short term forcers (ozone and black carbon)
- 84% price increase because of Temp/rainfall alone

GREENHOUSE GAS EMISSIONS CO_2e (2010 & 2030)

EFFECT OF AGRICULTURE ON BIOSPHERE Thin inter-connected layers

Freshwater 70% of 75 mile sphere <u>Topsoil</u> **12-16** \rightarrow \rightarrow **2-8** inches **Atmosphere 20 miles**

Water in, on, and above the Earth

Liquid fresh water

Howard Perlman, USGS Jack Cook, Adam Nieman

GREENHOUSE GAS EMISSIONS CO_2e (2010 & 2030)

AGRICULTURAL CH₄ EMISSIONS: WHY AND HOW?

Dr. Tran Kim Tinh, Can Tho University

AGRICULTURAL N_2O EMISSIONS: WHY AND HOW?

FEEDING 9 BILLION & FACING CLIMATE CHANGE = Working with >2 billion on <\$2/day and <2 ha

- These family farms grow ~90% rice, ~65% wheat and ~55% corn.
- With about 43% (60%) of the world's population employed in agriculture
- Many barriers to implementation including accessibility to ... financing, ... institutional, ecological, technological development, diffusion and transfer barriers.

MODEL FOR CLIMATE SMART FARMING

CLIMATE SMART FARMING IN INDIA

MITIGATING CLIMATE CHANGE AND POVERTY = Low carbon rural development

ELECTRICITY & CLEAN COOK-STOVE GAP

ENERGY DEMAND TRAJECTORIES

ÅN AVOIDED TON OF CARBON IS AS IMPORTANT AS A REDUCED TON OF CARBON

CARBON MARKET NEEDS

Additionality Permanence Accounting for leakage Monitoring Measurement Transparency

OUR GOALS FOR INDIA

consulting local peoples supporting institutional capacity establishing replicable practices meeting the needs of markets Certification

INTERCONNECTIONS & ENERGY FLOWS

STRATEGY

BIOGAS COOKSTOVES

Unit serving a family of 5-6 \rightarrow 1.5-3 tons per year

-Reducing indoor air pollution -Improving household health

 opening the door for new income generation opportunities

CLIMATE SMART FARMING

GHG EMISSION REDUCTION MEASUREMENTS (not relying on IPCC Tier 1 emission factors)

TASK AT HAND

Farmer surveys/diaries for baseline conditions/practices

- Fertilizer and manure, water management, pesticides
- Soil qualities (T, pH), weather, treecover, cropping cycles
- New interventions "sustainable" practices by NGO partners
 - Multiple interests: yield, low external input, soil and water quality, crop rotations

Sample collection

- Choice of fields/farmers
- Ensure replication
- Design of gas collection chambers and sampling protocol
- Greenhouse gas emission measurements
 - Accuracy and precision of the gas chromatographs
 - Calibration and standards
 - Chamber graphs and seasonal rates
- Data analysis and modeling

CHALLENGE

CAPACITY BUILDING IN RURAL INDIA

- Limited understanding among lab and field workers of
 - Climate change
 - "Its about ozone destruction"
 - "You can sell the air?"
 - Carbon markets
 - Importance of sampling, measurements and uncertainties
 - Modeling \rightarrow Aggregation \rightarrow Validation offset credits
- Scientific/educational/cultural background
 - Staff retention
 - Gender gap & language barriers
 - Limited boundary between work/family issues
 - Efficiency and infrastructure

Choosing domestic scientific advisors and collaborators

REPLICATES, SAMPLING DESIGN, CALIBRATION, ANALYSIS

40cm Sampling tube: 20cm 80cm Sampling tube: 40cm

120cm Sampling tube: 60cm

WE STARTED WITH STORIES

What brought you here? What do you feel about our farming projects? How can we change our training session?

RICE GHG EMISSION SAMPLING

40cm Sampling tube: 20cm

CHAMBERS

80cm Sampling tube: 40cm 120cm Sampling tube: 60cm

DATA ANALYSIS AND STORAGE

			/	
10 -		×		
5 -	V			
	-			
0.0	•	8.0 tration		16.0

×

N

 $R^2 = 1.000$

e ID	N ₂ O area	N ₂ O (ppmv)	CH4 area	CH ₄ (ppmv)	
Run 01	281936	0.443	23888	1.535	
Run 02	284478	0.448	22939	1.443	
Run 03	289283	0.457	22038	1.356	
Run 04	289388	0.457	22444	1.395	
Run 05	284654	0.448	22663	1.416	
Run 06	287388	0.453	23142	1.463	
Run 07	288412	0.455	23098	1.458	
Run 1	156850	0.202	24296	1.574	
Run 1	255440	0.392	42714	3.351	
Run 1	434271	0.736	81174	7.060	
Run 1	843039	1.521	163055	14.958	
	291148	0.461	25262	1.667	
	293695	0.465	379508	35.837	
-	306657	0.490	765752	73.092	
	311449	0.500	1194318	114.431	
	280017	0.439	48246	3.884	
	299794	0.477	459640	43.566	
	324070	0.524	822787	78.594	
	335482	0.546	1073892	102.815	
	285467	0.450	24173	1.562	
	436631	0.740	212563	19.734	

20

area (mV*sec)

Peak

MAA	Temp. (°C)	Box Vol. (L)	Plant Vol. (L)	N ₂ O (ppm)	CH ₄ (ppm)	N2O (µg)	CH4 (µg)
0	27.0	22 0205	0.00	\$####	💢 1.667	24.7	32.4
10	36.0	33.0325	0.02	0.465	35.837	24.2	677.2
20	38.0	FWT Level (cm)	Sampler	0.490	73.092	25.3	1372.3
30	39.0	5	C.M	0.500	114.431	25.7	2141.5
	Syringe age Analyzed after (h)		3	0.011	0.114	28.74	46814.56
			2	Above MDL	Above MDL	× 0.671	✓ 0.998

MAB	Temp. (°C)	Box Vol. (L)	Plant Vol. (L)	N ₂ O (ppm)	CH4 (ppm)	N2O (µg)	CH4 (µg)	
0	30.0	24 0005	0.02	X####	3.884	24.0	77.1	
10	32.0	34.0225		0.477	43.566	25.9	859.0	
20	36.0	FWT Level (cm)	Sampler	0.524	78.594	28.0	1529.6	
30	38.0	5	C.M	0.546	102.815	29.0	1988.2	
	Syringe age		3	0.011	0.114	115.47	42692.26	
	Analyzed after (h)		2	Above MDL	Above MDL	✓ 0.980	✓ 0.987	

	Syringe age Analyzed after (h)		2	Above MDL	Above MDL	🖌 0.979 🗖	0.990
			3	0.011	0.114	814.55	30886.76
30	39.0	6	C.M	1.206	78.998	58.2	1387.4
20	38.0	FWT Level (cm)	Sampler	1.059	51.561	51.3	908.4
10	34.0	51	0.02	0.740	19.734	36.3	352.2
0	28.0	31	0.02	2 ####	X 1.562	22.5	28.4
MAC	Temp. (°C)	Box Vol. (L)	Plant Vol. (L)	N ₂ O (ppm)	CH ₄ (ppm)	N2O (µg)	CH4 (µg)

60.0 -3000.0 y = 70.222x50.0 2500.0 $R^2 = 0.998$ 말 40.0 -≌2000.0 = 0.043x + 24.3200.0001CH4 II. N20 in. 30.0 = 0.671MAA 20.0 N₂O 500.0 10.0 0.0 0.0 20 30 10 0 10

10

10

RESULTS

INDIA LOW CARBON PEANUT FARMING

- 40-60% total N use reduction
- Adaptation (drought-hit year): 35-50% yield increase
- Mitigation: 50% decrease in GHG emission intensity
- Poverty alleviation: 70-120% higher farm profit

Traatmont	N input	Dry pod yield	Farm profit	N_2O flux	GHGI (Flux/yield)	Emission
Treatment	(kg/ha)	(t/ha)	$(Rs./ha)^a$	$(\text{kg N}_2\text{O-N/ha})$	(tCO_2e/t)	factor ^b
Kharif (rainfed)						
Baseline (BP)	65.8	0.40 ± 0.05	-16,500	1.29 ± 0.31	1.59 ± 0.38	1.7%
Alternate (AP)	40.8	0.61 ± 0.03	3,800	1.01 ± 0.03	0.77 ± 0.02	2.1%
Rabi (irrigated)						
Baseline (BP)	104.3	1.02 ± 0.18	36,800	1.88 ± 0.33	0.91 ± 0.14	1.6%
Alternate (AP)	42.4	1.38 ± 0.15	63,400	1.37 ± 0.41	0.47 ± 0.08	2.9%

2012-2013 Groundnut yield, farm profitability, N₂O flux intensity

^{*a*} Net return pooled. See supporting tables 4.1-4.5 for more details

^b $EF = (Seasonal N_2 O flux - background N_2 O flux)/N input; Assuming background flux to be 0.16 kg N_2 O-N/ha; see text for more discussion$

Fig. 1 Seasonal N₂O emissions: Rice (Anantapur, Andhra Pradesh, AEZ 3.0)

Baseline practices (BP) (Average of 3 replicates): 154 Kg N/ ha as 2 Urea or DAP applications, chemical pesticides, irrigation every 2nd day (not permanently flooded)

Alternate practices (AP) (Average of 3 replicates): 70 Kg N/Ha as manure (FYM & fermented liquids); Neem cake as pesticide; Irrigation every 3-5th day (AWD)

AGRICULTURAL MITIGATION POTENTIAL

India - Rice

- 35 million tons CO₂e/year (EPA 2014)
- >125 million tons \overline{CO}_2 e/year (Our internal estimate)

Fig. 2 Seasonal N₂O emissions: Millet (Bangalore, Karnataka, AEZ 8.2)⁵

PROGRESS

Pre-ante farmer surveys for baseline determination

(and post-ante diaries to monitor/reporting followed practices)

- Yield
- Economic indicators
- Fertilizer, water management, pesticides
- Alternative "sustainable" practice package
 - Interests: yield, economic benefit, low external inputs, soil/water/climate health
- Greenhouse gas emission reduction estimation
 - Field sampling
 - Laboratory measurements using gas chromatographs
- Data compilation analysis
- Tier 2 or 3 modeling
- Methodology and certification

BARRIERS AND CHALLENGES

Net Global Warming Potential (100 year time scale) =

(31*Methane) + (298*Nitrous Oxide) minus (3.66*Soil Carbon)

Correct baseline determination

• Fertilizer, yields, weather, soil, energy, water use, economics, demographics

Practical alternate technologies & State of the science

- Timing of organic matter addition (during dry season vs. rice)
- Timing of synthetic fertilization (one time vs. multiple)
- Nitrous oxide emission on site vs. leaching off-site
- Traditional seed variety vs. hybrids
- Methane and soil C/long term soil quality and yields: future need of C/N additions

Linking Ag standards within state/country/region to International market (GHG standards)

- Modeling
- Monitoring, reporting and verification
- Lifecycle analysis and ecosystem services

An IndiGo Airlines Airbus A320 aircraft is pictured parked at a gate at Mumbai's Chhatrapathi Shivaji International Airport on February 3, 2013. REUTERS/Vivek Prakash

Airline travelers in India who fly the country's largest airline now have an opportunity to support low-carbon rural development programs across the country.

The landmark partnership was **unveiled this weekend** between the Fair Climate Network (FCN), a consortium of Indian groups that is committed to improving health and livelihoods in rural communities, promoting climate resilience and reducing climate pollution, and IndiGo, the country's largest and fastest growing airline.

*	Tweet	
f	Like	
R +	Google +1	
in	LinkedIn	
*	Bookmark	

Kritee@edf.org

Twitter @KriteeKanko

Ongoing challenges

- State of the Science (trade-offs)
- Capacity building
 - GHG measurements
 - Data collection and processing
 - Baseline demographic, economic and agronomic data
- Scaling up and integrating different activities across a landscape
 - Modeling for market linkages
 - Compost protocol for Soil C sequestration + Rice Protocol for methane
 - Crop-animal farming cycle
 - Health, water, ecosystem services

GHG Emission Science: Challenges

Net Global warming potential (100 year time scale) =

(31*Methane) + (298*Nitrous Oxide) minus (3.66*Soil Carbon gain)

- Antagonism between N₂O & CH₄ wrt water management is known; but
 - unlike CH₄, 70-90% N₂O emitted within 4-7 days. Once a week measurements misleading.
 - measurements should capture N₂O peaks (0-4 days after critical events)
- Antagonism between methane emissions and soil C gain is not yet appreciated
 - Water and C management for CH₄ reduction degrades stable soil C
 - Soil C loss (0.5-1 ton C/yr/ha) can undo effect of N₂O and CH₄ reductions
- Soil C loss \rightarrow a negative impact on soil quality, climate resilience and crop yield
 - Will require more C and N input in future
- Measurement common but require daily careful calibration
 - Use of only 1-2 points for calibration \rightarrow faulty results
 - Use of 2-3 samples from a chamber \rightarrow misleading emission rates

GHG Emission Science: Requirements

- Simultaneous N, C and Water management for least GWP
 - (e.g., N addition just before flooding)
- Standard operating protocols for
 - Soil organic and inorganic C measurement (NEW)
 - Emission rate calculation (>3 points on conc. vs. time graph)
 - Frequency of gas sampling for capturing nitrous oxide peaks
 - Calibration by using at least 3 standards each for CH_4 and N_2O
- Water level monitoring by field water tube
 - especially near static chambers
- Detailed below & aboveground biomass yield estimation
- Detailed energy/water use assessment

Other measurements

pH, rain, max min temperature, humidity, daily field water tube data

From: Robertson et al, 2014. Farming for Ecosystem Services: An Ecological Approach to Production Agriculture, Bioscience doi: 10.1093/biosci/biu037

Carbon dioxide emissions, 2010 The top 15 emitters account for 75% of emissions

Yields – CCAC 2014

There are more people living inside this circle than outside of it.

Valerie Pieris / Via reddit.com

Baseline (MA) and Alternative (SA) plots

Three Replicates: Random plot design or random chamber placement

Putting model uncertainties into perspective

Technical Achievements (and Challenges)

- Same day analysis @GC RSD <3 % (Sample storage for bad days, N2O leaks)
- Minimum detection limit for daily emission rate (poor R²)
- Extrapolation of half hour measurement to daily rate (diurnal curve)
- Area under the curve (seasonal emission rates)
- Outliers among replicate chambers, absence of replicates
- Absence of uniform leveling
- Hard to maintain water level in drylands
- Fallow land sampling schedule: Unclear!
- Weekly 4 point sampling for 30-45 minutes except for these events
 - Rain/Irrigation (3-4 days)
 - Fertilizer/manure (3-4 days)
 - Pesticide
 - Weeding

Training session in the Lab *Clarifying the process: Sampling to GHG emission rates*

Multi-point calibration curves for GC

card (bbund)	1.70 (bbund)
1.535	0.197
3.352	0.393
7.152	0.795
15.682	1.615

Chamber graph and minimum detection limit

Linear increase in GHG concentration inside the chamber

Forcing models to conform towhat?

Water footprint of agriculture

