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Abstract 

This paper describes the development of a statistical forecasting method for summer monsoon 

rainfall over Thailand. Predictors of Thailand summer (August-October) monsoon rainfall are 

identified from the large-scale ocean-atmospheric circulation variables (i.e., sea surface temperature 

and sea level pressure) in the Indo-Pacific region. The identified predictors are part of the broader El 

Niño Southern Oscillation (ENSO) phenomenon. The predictors exhibit significant relationship to the 

summer rainfall only during the post-1980 period when the Thailand summer rainfall also shows a 

relationship with ENSO. Two methods for generating ensemble forecasts are adapted. The first is the 

traditional linear regression, and the second is a local polynomial based non-parametric method. The 

associated predictive standard errors are used for generating ensembles. Both the methods exhibit 

significant comparable skills in a cross-validated mode. However, the nonparametric method shows 

improved skill during extreme years (i.e. wet and dry years). Furthermore, the models provide useful 

skill at 1~3 month lead time that can have strong impact on resources planning and management. 
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1. Introduction 

Seasonal forecasts of Thailand summer monsoon rainfall can have significant 

value for resources planning and management - e.g., reservoir operations, agricultural 

practices, and flood emergency responses. In particular, increased population stress on 

the Chao Phraya River basin, one of the key regions for Thailand’s socio-economic well 

being, is resulting in water quantity and quality problems. To mitigate this, effective 

planning and management of water resources is necessary. In the short term, this requires 

a good idea of the upcoming monsoon season rainfall – i.e. good seasonal forecast.  In the 

long term, it needs realistic projections of scenarios of future variability and change. 

There is no known long- lead forecast of Thailand summer monsoon rainfall or stream 

flows.  As a result, much of the water a resource planning in Chao Phraya basin and in 

Thailand in general is near term – i.e. responding to near term weather forecast. 

There is a rich literature of studying the variability of Indian summer monsoon 

both from observational data (e.g., Walker, 1924; Rasmussen and Carpenter, 1983; Pant 

and Parthasarathy, 1981; Fein and Stephens, 1987; Webster et al., 1998) and from 

modeling studies (e.g., Ju and Slingo, 1995; Meehl and Arblaster, 1998). These studies 

have identified a strong link between El Nino Southern Oscillation (ENSO) and the 

Indian summer monsoon. Statistical methods for forecasting the Indian monsoon rainfall 

use this ENSO - monsoon relationship. For example, Krishna Kumar et al. (1995) and 

Shukla and Mooley (1987) identify several predictors of the Indian monsoon and 

developed statistical models for forecasting – almost all of the predictors are various 

facets of ENSO. With this framework of predictors, statistical models using time series 

(Thapliyal, 1981, Rajeevan 2001.) and artificial neural network techniques (Sahai et al., 



  

2000) have been developed by the Indian Meteorological Department and other 

researchers for use in operational forecast. 

Krishna Kumar et al. (1999a) showed that the ENSO-Indian monsoon relationship 

has substantially weakened in the post-1980 period. They argue for changed ENSO 

characteristics and global warming as potential causes for this weakening. This is having 

a strong impact on the forecasting efforts of Indian monsoon as most of its predictors 

(mentioned above) are related to ENSO. Furthermore, Krishna Kumar et al. (1995, 

1999b) show that the Indian monsoon predictors are strongly related to the Indian 

monsoon only when the monsoon itself is strongly related with ENSO.  Interestingly, 

results from our research (Singhrattna et al., 2004) indicated that the Thailand monsoon is 

more closely related to ENSO in the post-1980 period, just when the Indian monsoon 

relationship with ENSO is weakening. This enhances the prospects of forecasting 

Thailand monsoon rainfall. 

There is little in the literature studying the variability and predictability of 

Thailand summer monsoon. Admittedly, it is much smaller in comparison to the Indian 

summer monsoon but has a significant socio-economic impact in Thailand. There have 

been some studies of late on the variability of Thailand monsoon and rainfall over 

Singapore and Indonesia by Kripalani and Kulkarni (1997, 1998 and 2001) and more 

recently by Singhrattna et al., 2004 and Singhrattna 2003. Distributed hydrologic models 

for Chao Phraya and Nakon Sawan river basins have been developed (Jha et al., 1997, 

1998), but these are mainly for real time or event based simulation of stream flow and not 

for seasonal forecasting. 

 



  

It is not clear if there is a seasonal forecast mechanism in place in Thailand. 

Unlike in the case of the Indian summer monsoon, the Indian Meteorological Department 

is required to issue a seasonal forecast of the upcoming monsoon season by the end of 

April. The great need and utility of the Thailand monsoon forecast and the enhanced 

prospects of its predictability in recent decades, serves as a strong motivation for the 

present research.  

 We adapt two approaches for ensemble forecast of Thailand summer monsoon 

rainfall in this paper. The first is a traditional linear regression approach and the second a 

nonparametric technique based on local regressions. 

 The paper is organized as follows. Data description and predictor identification 

are first presented. The two forecasting methods are next described followed by cross-

validated model skills in forecasting the Thailand summer rainfall. Discussions of the 

results conclude the paper. 

 

2. Data  

The data used in this study are: 

1. Rainfall data for the Thailand summer monsoon (August – October), and surface air 

temperature (SAT) data during pre-monsoon months (March – June), averaged over three 

stations, Nakhon Sawan (15o48'N, 100o10'E), Suphan Buri (14o28'N, 100o08'E) and Don 

Muang (13o55'N, 100o36'E). All of these stations are in the West Central region and in 

the Chao Phraya River basin. These data were obtained from the GEWEX Asian 



  

Monsoon Experiment (GAME) project website1. The GAME program, part of the global 

energy and water cycle experiment (GEWEX) has done a good job of collecting and 

archiving data from South East Asian countries. In general, it has been difficult obtaining 

long hydroclimate data from South East Asia and Thailand in particular. Please see 

Singhrattna (2003) for further details on these data sets. 

2. Large-scale ocean and atmospheric circulation variables such as sea surface 

temperature (SST); sea level pressure (SLP), winds, velocity potential were obtained 

from NCEP/NCAR Re-analysis (Kalnay et al., 1996). These data sets span the period of 

1948 – current, covering the globe on a 2.5°x2.5° grid and available at 

http://www.cdc.noaa.gov 

3. Standard ENSO indices: NINO3, NINO1+2, Southern Oscillation Index (SOI) 

available at http://www.cpc.noaa.gov 

4.   Indian Ocean Dipole (IOD) index (Saji et al. 1999). This is an index based on SST 

anomaly difference between the Eastern and Western tropical Indian Ocean. The index, 

its impact on the adjoining continental rainfall, interactions with ENSO and 

teleconnections can all be obtained from the IOD home page 

http://www.jamstec.go.jp/frsgc/research/d1/iod/.  

 

3. Identification of Predictors  

 The aim in this section is to identify predictors for the Thailand summer rainfall, 

which can then be used in statistical forecast models. The two main requirements for any 

                                                 
1 http://hydro.iis.u-tokyo.ac.jp/GAME-T/GAIN-T/routine/rid-river/longterm.html 



  

useful predictors are (i) good relationship with the seasonal rainfall and (ii) reasonable 

lead-time (i.e. months to season). Our earlier work (Singhrattna 2003, Singhrattna et al. 

2004) indicated that Thailand summer rainfall is strongly correlated with ENSO in the 

post-1980 period and also with pre-monsoon (especially, Mar-May) land surface 

temperatures representing the land-ocean thermal gradient.  So, the first step is to look for 

relationship with standard ENSO indices dur ing the pre-monsoon seasons and follow up 

with correlations between the rainfall and large-scale ocean-atmospheric variables (SSTs, 

SLPs). This approach of correlation with large-scale ocean-atmospheric circulation 

variables has been used to identify predictors for stream flows in Northern Brazil 

(DeSouza and Lall 2003) and in the Truckee-Carson river basins in NV, USA (Grantz 

2003). 

 

3.1 Correlation with ENSO indices  

 Thailand summer monsoon rainfall was correlated with the standard ENSO 

indices and IOD index from pre-monsoon seasons and also with the spring (March-May, 

MAM) Thailand air temperatures (SAT). The latter is believed to be an indicator of the 

land-ocean thermal gradient that is important for the strength of the monsoon 

(Singhrattna et al. 2004). The correlations are computed for the post-1980 period and 

shown in Table 1. Correlation values that are statistically significant at the 95% 

confidence level using a t-test (Helsel and Hirsch 1995) are shown in bold in the table. It 

can be seen that the SLP-based ENSO index, SOI, shows a strong correlation with 

monsoon rainfall during the concurrent season and also 1-2 seasons prior. The spring land 

temperatures also exhibit a significant correlation as expected. The IOD shows a strong 



  

correlation with the monsoon rainfall at 2-season lead-time. All these brighten the 

prospects for a long-lead forecast. 

 To confirm that the correlations are strong only during the post-1980 period (as in 

Table 1), selected predictors from pre-monsoon seasons (JFM NINO3, MJJ SOI, MAM 

IOD and MAM SAT) were correlated with monsoon rainfall on a 21-year moving 

window (Figure 1). It can be seen that the predictors show correlations with summer 

rainfall only in recent decades, much as the correlations between the rainfall and ENSO 

(shown in solid line between summer rainfall and ASO SOI) and seen by Singhrattna et 

al. (2004). Similar shifts have been seen (Miyakoda et al., 2003) in pre-monsoon signals 

of South Asian monsoon. This suggests that the ENSO-based predictors are related to the 

monsoon rainfall only when the monsoon rainfall itself is related to ENSO. Interestingly, 

this is similar to the finding by Krishna Kumar et al. (1995) where they show that the 

predictors of Indian monsoon rainfall are related to the rainfall only during the period 

when the Indian monsoon is strongly related with ENSO. In the case of the Indian 

monsoon this is pre-1980 period. This is consistent with the ENSO related circulation 

changes during pre and post-1980 periods (Krishna Kumar et al., 1999a; Singhrattna et 

al., 2004).  Land cover changes (Kanae et al., 2001) and decadal changes in ENSO-

monsoon relationship (Krishna Kumar et al., 1999b; Torrence and Webster, 1999) could 

lead to trends in monsoon precipitation and consequently, add to the non-stationarity of 

the relationship as seen in Figure 1.   

 

3.2 Correlation with Large-Scale Variables 

 While the indices show significant correlations as seen above, we would like to 



  

check their large-scale aspects and also to see if other stronger predictors could be 

identified. To this end, the summer monsoon rainfall was correlated with SSTs and SLPs 

during pre-monsoon seasons and the correlation maps are shown in Figure 2.  The shaded 

regions indicate correlations that are significant at 95% confidence level. With SLPs 

(Figure 2(a)) the correlations are strong in the Pacific subtropical region indicating that a 

higher than normal subtropical pressure tends to enhance the easterlies and thereby 

increasing the moisture transport to the Thailand and consequently, the rainfall. Wang et 

al. (2003, see their Figures 1 and 2) found similar pressure patterns in the Pacific 

subtropical region to be linked with variations in the Australian and Asian monsoons. 

Strong positive correlations with SSTs (Figure 2(b)) are seen in the Eastern Indian Ocean 

and Western Pacific Ocean regions around the equator. This region is also one of the 

poles of the Indian Ocean Dipole index (Saji et al. 1999) and hence, the strong correlation 

with IOD seen in Table 1 and Figure 1.  These correlation maps indicate persistence from 

spring leading up to the monsoon season, thus providing the potential for long- lead 

forecast. The solid box in the figures shows the regions of high correlation from where 

the predictors will be developed in the following sections.  

 

3.3 Predictor Selection 

 Based on the correlations with indices and the correlation maps with large-scale 

variables, predictors with high correlations to the summer rainfall were identified. With 

this criterion, the selected predictors are (i) SSTs averaged over 10.5oS-14.5o S latitudes 

and 108o-120o E longitudes and (ii) SLPs averaged over 20oN-30oN latitudes and 165o-

180o E longitudes. Thailand surface air temperature (SAT) is also selected as one of the 



  

predictors. This essentially captures the land-ocean gradient that gets set up by the land 

temperatures, especially during the Spring season before the monsoon (Singhrattna, 

2003). 

 To check the temporal variability of the strength of the predictors to monsoon 

rainfall, moving window correlations are shown in Figure 3. As expected, the predictors 

are correlated mainly in the post-1980 period as in Figure 1. Furthermore, the predictors 

show significant correlations with the summer rainfall at 1~2-season lead-time. 

 

4. Forecast Models  

 Typically, a regression (often linear) is fit between the identified predictors and a 

single dependent variable (i.e. the summer rainfall). The fitted regression is then used to 

forecast the mean value of the variable. There is a rich literature for fitting and testing 

linear regression models, and software is extensively available (e.g., Helsel and Hirsch 

1995). Such models have been widely used for hydroclimate forecasting in the US (e.g., 

Lui et al. 1998, Piechota et al. 2001, Cordery and McCall 2000; Mccabe and Dettinger, 

2002) for the Indian monsoon forecasting (Hastenrath, 1987, 1988; Krishna Kumar et al. 

1995). For forecasting a field of dependent variable such as precipitation at several 

locations from fields of independent variables (e.g., tropical SST, SLP etc.), Canonical 

Correlation Analysis is typically used (e.g., Shabbar and Barnston, 1996; Ntale et al., 

2003). Below, the linear regression model is briefly described. 

 

4.1 Linear Regression 

 Traditional linear regression involves fitting a linear function between the 



  

response variable (i.e. summer rainfall) and the independent variables (i.e. predictors). 

They are of the form: 

    

   Yt = a1 * x1t + a2 * x2t + a3 * x3t + … + ap * xpt + et       [1] 

        t = 1,2,…N   

Where the coefficients a1, a2,…, ap are estimated from the data, typically, minimizing 

the sum of squares of the errors; et is the error which is assumed to be Normally (or 

Gaussian) distributed with mean 0 and variance σe2 (also estimated from the data) and N 

is the number of observations. The equations for the coefficients, the error variance and 

methods for testing the goodness of the fitted model can be found in any standard book 

on statistics (e.g., Helsel and Hirsch, 1995). 

 Implicitly, the variables are also assumed to be normally distributed. If not, they 

are generally transformed to a normal distribution (e.g., log or power transform) before 

the model is fit. Once the model is fit (i.e. the coefficients estimated) then for any new 

value of the predictors, the model with the fitted coefficients (Equation [1]) is used to 

predict the mean value of the dependent variable, say, Ynew. Predictive standard error, 

σpe, (or the standard deviation of the error of the predicted mean) is obtained from the 

theory (Helsel and Hirsch 1995). Normal random deviates with a mean of 0 and standard 

deviation σpe provide the ensembles of errors, when added to the mean estimate, Ynew, 

results in an ensemble forecasts. This approach of using Normal distribution with the 

predictive standard error was applied by Clark and Hay (2004) for generating ensemble 

forecasts of stream flows in the Western US. 



  

 In the above model, if the independent variables happen to be past values of the 

response variable itself, then it forms a time series model of Auto Regressive framework.  

Hydrologists have developed and used such models for stream flow simulation and 

forecast (Salas 1985, Yevjevich 1972, Bras and Iturbe 1985).  

 The main drawbacks of traditional linear regression models are (i) assumption of 

Gaussian distribution of data and errors, (ii) assumption of linear relationship between the 

variables and, (iii) not portable across data sets (i.e. sites). Furthermore, if the fitted 

model is found to be inadequate then the alternative choices are limited, more so when 

the number of observations are small. 

 

4.2 Nonparametric regression – Locally Weighted Polynomials 

 Nonparametric methods provide an attractive alternative in alleviating some of the 

drawbacks of the traditional linear regression. In this approach, the model is: 

 

   Yt = ƒ( xt) + et                        [2] 

   Where, xt = (x1t, x2t, x3t, … x pt), t = 1,2,…N  

This is similar to the linear regression model (Equation [1]) but the function ƒ could be 

linear or nonlinear, and the errors, et, are assumed to be normally distributed with mean 0 

and variance σle2. The key difference from linear regression is that the function f is fit 

“locally” to estimate Y. In that, the value of the function at any point ‘xi’ is obtained by 

(i) identifying a small number K (=α *N, where α ∈(0,1]) of neighbors to ‘xi’ and (ii) 

fitting a polynomial of order (p) to the neighbors. Neighbors are identified from the 



  

observations that are closest to ‘xi’ in terms of the Euclidian distance or other such metric 

(e.g., Mahalanobis distance, Yates et al., 2003). The fitted polynomial is then used to 

estimate the mean value of the dependent variable. The coefficients of the polynomial are 

estimated using weighted least squares approach. The theoretical background of the local 

polynomial method is described in detail in Loader (1999) and the author refers to it as 

LOCFIT – henceforth, we will use the same terminology in this paper.  

 LOCFIT also provides the local standard errors of the estimate σ le, and local 

predictive standard errors σ lpe (Loader 1999), corresponding to σe and σpe, respectively, 

in the case of linear regression described in the previous section. The steps for generating 

the ensembles are same as that for the linear regression: (i) for a new value of the 

predictor set, the mean value, Ynew, is first estimated using the LOCFIT approach 

described above, (ii) the local predictive standard error σ lpe are estimated (Loader 1999) 

and (iii) Normal random deviates with a mean of 0 and standard deviation of σ lpe when 

added to the mean estimate Ynew, result in ensemble forecasts.  

 The key parameters to be estimated are the size of the neighborhood (K or α ) and 

the order of the polynomial (p). These parameters are obtained using objective criteria 

such as Generalized Cross Validation (GCV) function, Likelihood function: 
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where ei is the error (i.e. difference between the model estimate and observed), N is the 



  

number of data points and m is the number of parameters. For a suite of α  and p values 

the GCV function is computed from the above equation and the combination that gives 

the least GCV value is selected. For stability purposes, the minimum neighborhood size 

should be twice the number of parameters to be estimated in the model.  

 Note that if a first order (i.e. linear) polynomial is selected, and if the 

neighborhood includes all the observations (i.e., K= N or α =1) this then results in the 

traditional linear regression. Thus, LOCFIT can be viewed as a superset. We used the 

software LOCFIT developed by Loader and is available on- line2.    

 There are several nonparametric approaches to estimating the function f locally, 

such as, kernel-based (Bowman and Azzalini 1997), Splines, local polynomials 

(Rajagopalan and Lall 1998; Owosina 1992; Loader, 1999). Owosina (1992) performed 

an extensive comparison of a number of regression methods both parametric and 

nonparametric on a variety of synthetic and real data sets. He found that the 

nonparametric methods handily outperform parametric alternatives. All of the 

nonparametric methods perform similarly but LOCFIT is easy to implement, hence we 

adapted it in this paper.   

 LOCFIT has been used for several hydroclimate applications (Lall, 1995) – for 

spatial interpolation of precipitation (Rajagopalan and Lall, 1998); salinity modeling 

(Prairie et al., 2003a; Prairie, 2002); stream flow modeling (Prairie et al., 2003b, 2002); 

stream flow forecasting (Grantz, 2003) and flood frequency estimation (Apipattanavis et 

al., 2004).  

                                                 
2 http://cm.bell-labs.com/cm/ms/departments/sia/project/locfit/index.html 



  

 Variants of LOCFIT also provide attractive alternative to ensemble generation. 

For example, the (K) neighbors of an estimation point ‘xi’ identified can be re-sampled 

(i.e. bootstrapped) with a weight function that gives more weights to the nearest neighbor 

and less to the farthest, thus, generating ensembles. Lall and Sharma (1996) developed 

this approach and used it for stream flow simulation. Later Rajagopalan and Lall (1999) 

and Yates et al. (2003) extended it for stochastic daily weather generation and DeSouza 

and Lall (2003) applied it for stream flow forecasting. 

 

4.3 LOCFIT with Resampled Residuals (Modified K-NN) 

 Often times the errors et are not Normally distributed. To address this issue a 

modification to LOCFIT was developed by Praire (2002).  Prairie et al. (2003a,b) applied 

this for stream flow and salinity modeling. Later, Grantz (2003) demonstrated the use of 

this approach for stream flow forecasting on the Truckee-Carson basin in Nevada, USA. 

Prairie (2002) referred this as the “Modified K-NN”, and we do the same in this 

paper, henceforth. The modification is described below. 

Suppose an ensemble is required for a new value of the predictor xnew, and suppose that 

the polynomial order (p) and the size of the neighborhood (K) have been obtained using 

GCV or other objective criteria. The steps in the modification are as follows: 

(i) Identify K nearest neighbors to xnew and fit a polynomial of order p. The fitted 

polynomial provides the estimate of the dependent variable at all the neighbors and 

consequently, the residuals.  

 



  

(ii) The fitted polynomial from step (i) is used to estimate the mean value Ynew. (This 

step is just the LOCFIT process described in the previous section). 

(iii) Now select one of the (K) neighbors of xnew, say xi and select the corresponding 

residual ei (already obtained from step (i)),  this is now added to the mean estimate  

Ynew + ei; thus, obtaining one of the ensemble members. The selection of one of the 

neighbors is done using a weight function 
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As can be seen, this weight function gives more weight to the nearest neighbor and less to 

the farthest neighbors.  

Repeat step (iii) several times, resulting in an ensemble.   

 The number of neighbors for fitting the local polynomial can be different from the 

neighbors used to resample the residuals (e.g., Prairie, 2002). In this work we have kept 

both to be the same. In the modification described above, if the number of observations 

(N) is small then the re-sampled residuals (step (iii) above) provide very limited variety 

in the ensembles and this is the main disadvantage.  

 

5. Model Evaluation 

 The models are verified in a cross-validated mode. In that, the data (rainfall and 

the predictors) for a given year is dropped out and the model(s) based on the rest of the 

data is applied to generate ensemble forecast for the dropped year. This is repeated for all  

 



  

the years for the 1980 – 2000 period. Apart from visual inspection, the ensembles are 

evaluated on three criteria: 

(i) Correlation between the observed value and the median of the ensemble forecast. This 

is much like evaluating the mean forecast that would come from a standard linear 

regression model. 

(ii) Likelihood function (LLH) (Rajagopalan et al. 2002). This evaluates the skill of the 

model in capturing the Probability Density Function (PDF). 

(iii) Rank Probability Skill Score (RPSS) (Wilks 1995). This evaluates the skill of the 

model in capturing the categorical probabilities (i.e. the probability distribution function). 

 The likelihood function (LLH) is applied to measure the skills of forecast models. 

Its process is to categorize forecasted values to three divisions: below, normal and above 

normal. The ensemble forecasts falling into these three categories are compared to 

historical data and then develop a skill score. The likelihood skill score for any given year 

of forecast is defined as: 
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Where N is the number of years to be forecasted, j is the category of the observed value 

in year t, tjP ,
ˆ is the forecast probability for category j in year t, and Pcj,t is the 

climatological probability for category j in year t. Here we divided the rainfall into three 

categories at the 33rd and 66th percentile, so the probabilities of each of the category are 



  

1/3 and N is length of data. The LLH values vary from 0 to number of categories (i.e. 3 in 

this study). The score of zero indicates lack of skill, a score of greater than 1 indicates 

that the forecasts have skill in excess of the climatological forecast and a score of 3 

indicates a perfect forecast. 

 The ranked probability skill score (RPSS) is also applied to quantify the skills of 

forecast models. This method evaluates the probability of ensemble forecasts falling into 

many categories (i.e. in this study: below average, average and above average) and 

compared to historical data. The RPSS score for any given year is defined as: 
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for R mutually exclusive and collectively exhaustive categories (in this case we have 

three categories, so R = 3). The vector d (d1, d2, ... dR) represents the observation vector 

such that dR equals 1 if the observation fell in category ‘R’ or 0 otherwise. The RPSS is 

then calculated as (e.g., Toth, 2002; Wilks, 1995) 
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RPSS scores vary from +1 to -∝ (i.e. perfect skill to bad skill). Scores above 0 indicate 

improvement over climatological forecast. 

  



  

 For the LOCFIT and Modified K-NN methods, due to small sample size, we used 

polynomial of order (p=1, i.e. local linear fit). However, the neighborhood size was 

objectively obtained using the GCV criteria. 

 

6. Results 

 From the set of predictors (based on SST, SAT, SLP fields and ENSO indices) 

identified in the previous section, the optimal subset was found by the combination that 

gave the best-forecast skill. Several formal methods are available for subset selection – 

such as stepwise regression or cross-validation metrics etc. Since the number of 

significant predictors is small, in our case, almost all combinations were tried out to find 

the optimal predictor set. For summer monsoon rainfall, the best set of predictors were 

found to be the ones based on SLP and SST that are described in section 3.3. The land 

temperatures (SAT) did not seem to improve the skill much. Forecasts were issued at the 

beginning of each month starting April 1st for each year, using all the three methods and, 

the predictors are the average values from the preceding season (i.e. preceding three 

months). Except for forecasts issued on July 1st and August 1st, SST predictor of Mar-

May and the SLP predictor of preceding season are used – as this combination gave the 

best skill. Thus, July 1st forecast is based on SST predictor of Mar-May and SLP 

predictor of Apr-Jun and, August 1st forecast is based on SST predictor of Mar-May and 

SLP predictor of May-Jul. 

The skills of the fo recasts are evaluated using the three skill measures described 

in the previous section. Skills are also compared during high (wet) and low (dry) years.  

 



  

Threshold exceedance probabilities during the extreme years are estimated and the PDFs 

of ensembles of a few representative years are also presented. 

 The skill scores are shown in Figure 4. It can be seen that the skill increases 

significantly as the forecast lead-time decreases for all the methods. This is intuitive and 

consistent with expectations. The linear regression and LOCFIT show similar skills on all 

the three measures. This indicates that for the most part the relationship between the 

predictors and the rainfall is linear, and that linear regression seems appropriate. The 

Modified K-NN is comparable in performance as the lead-time decreases, but early on, 

its performance is weak. This we believe is due to the small sample size of residuals used 

in resampling. Given that we only have 21 data points (the data used for forecast is for 

the period 1980 – 2000) K tends to be of the order of 7~8. With a small K, coupled with 

the fact that at long leads, the relationship between predictors and rainfall is not as strong, 

consequently, there is less variety in the ensembles and a bias if the predictors are not 

very useful - which leads to poor skill scores.   

 Notice the significant skill from May 1st onwards, providing a 2-month lead-time 

that can be very useful for resources planning and management. This useful long- lead 

skill, regardless of the method, is quite impressive. 

 In order to compare the performance of these models in extreme years, Figures 5 

(a) and (b) show the skill scores for the High (wet) and Low (dry) rainfall years defined 

in Singhrattna (2003). Interestingly, the nonparametric models (LOCFIT and Modified 

K-NN) seem to show slight improvement over linear regression for forecasts starting 

May 1st in both the wet and dry years and generally for all the skill measures. This could 

be explained by the fact that subtle nonlinear relationship exists between the predictors 



  

and the rainfall at the extremes and hence there is some advantage to use nonparametric  

methods.  Furthermore, notice that the skill in wet years is much more than that in the dry 

years. 

 PDFs of the ensemble forecasts (solid line) made on August 1st during selected 

wet and dry years from the three models are presented along with the climatological PDF 

(dashed line), which is estimated from the entire historical record and, the observed 

values (dotted line) in Figure 6 and 7, respectively. For the wet years the Modified K-NN 

(Figure 6a) shows the ensembles to be shifted to the right of the climatological PDF. For 

the low years (especially, 1984 and 1994 Figure 7b) it can be seen that the LOCFIT 

method does a good job of shifting the forecast ensemble PDF to the left of the 

climatological PDF relative to the linear regression.   

 Even though the observed values are not in the middle of the ensemble PDFs (as 

we would like it to be) it still can provide useful information and skill in terms of 

threshold exceedance probabilities - one of the key variables for decision. We chose 700 

mm (the 90th percentile of the data) as a surrogate for wet (or flood) conditions and 400 

mm (the 10th percentile of the data) for dry conditions. From the PDFs of the ensembles 

forecast on May 1st, the exceedance probabilities are computed for the selected wet and 

dry years and shown in Table 2.  For the wet years the climatological exceedance 

probability is 0.10, while the ensembles in all the years except 1995 indicate a very high 

probability of exceedance of this threshold, thus indicating a wet condition. This 

information, provided on May 1st, three months ahead of the summer monsoon season 

could be very helpful in flood emergency response planning and management. For the 



  

dry years the models show a small non-exceedance probability of the lower threshold 

(400mm) when a higher probability of non-exceedance is expected. This is consistent 

with the fact that the models have low skill in dry years especially with the May 1st 

forecasts (Figure 5b).  However, we found the skill in these exceedance probabilities to 

be higher for June, July and Aug 1st forecasts. It can be seen that the nonparametric 

models in general show a slight improvement upon the linear regression model. Similar 

estimates were obtained from forecasts issued in other months. 

 The threshold exceedance probabilities can be used to effectively plan annual and 

seasonal reservoir, emergency response preparedness, flood plain management, cropping 

strategies, conservation measures etc. Furthermore, they can also be used as a surrogate 

for wetness or dryness and provide probabilistic information on flooding potential, land 

slides, etc. and develop optimal response strategies. Lastly, the ensembles of rainfall can 

be used to drive a water balance model and generate ensembles of stream flows. The 

forecasts will provide a useful and powerful tool to water managers in long-term planning 

that is currently lacking. 

 

7. Summary 

 Predictors from large-scale ocean, atmosphere and land variables that have strong 

correlation with Thailand summer monsoon have been identified. The predictors are 

consistent in terms of their physical mechanistic links to the monsoon. The predictors 

indicate a 1-2 seasons worth of lead-time of predictability. Interestingly, the predictors 

are related to the monsoon rainfall, only during post-1980 period when the monsoon 

rainfall is correlated with ENSO, as seen in Singhrattna (2003). This suggests the 



  

tantalizing possibility that ENSO relationship could be modulating the predictability – 

similar to what is seen in the case of the Indian monsoon (Krishna Kumar et al. 1995; 

1999b). The nonstationarity aspect of the relationship between the predictors and 

Thailand summer rainfall urges caution in that, the relationships have to be tested 

periodically and new predictors identified if necessary.  

 Two modeling approaches for ensemble forecasts of Thailand summer monsoon 

are offered – (i) traditional linear regression (parametric) and (ii) a nonparametric method 

based on local polynomials are adapted. Both the models exhibit significant skill at 2-5 

months lead-time. The nonparametric method seems to show improved skills in the 

extreme years, especially in the wet years.  

 The proposed models for forecasting Thailand summer rainfall make a significant 

contribution as no official forecast models exist to our knowledge. This has tremendous 

implications to water management, early warning and preparedness and also for resources 

planning in general. Further testing and improvements of these models are required. 
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Table 1: Correlations (post-1980 period) between Thailand summer rainfall (Aug – Oct) 
and large-scale climate indices 

(The 95% significant level is ±0.41. Values in bold are statistically significant at 95%) 

 JFM FMA MAM AMJ MJJ JJA JAS ASO 
Nino 1+2 0.41 0.31 0.29 0.28 0.25 0.17 0.08 -0.06
Nino 3 0.42 0.33 0.15 -0.01 -0.13 -0.19 -0.24 -0.31
Tahiti-Darwin (SOI) 0.40 0.27 -0.07 -0.27 0.44 0.45 0.57 0.59
Indian Ocean Dipole (IOD) -0.37 -0.44 -0.70 -0.55 -0.32 -0.17 -0.22 -0.34
Air Surface Temperature (SAT) 0.30 0.51 0.48 0.34 0.20 0.10 -0.01 -0.11
 

Table 2: (a) Exceedance probabilities for selected wet years and (b) Non-exceedance 
probabilities for selected dry years 

 
(a) 

Wet Years 
Year Climatology Modified K-NN LOCFIT Linear Regression 
1983 10.0% 81.0% 73.5% 71.3%
1988 10.0% 39.9% 54.7% 33.6%
1995 10.0% 3.1% 4.6% 1.1%

 
(b) 

Dry Years 
Year Climatology Modified K-NN LOCFIT Linear Regression 
1984 10.0% 1.0% 1% 1%
1987 10.0% 2.3% 3.7% 9%
1994 10.0% 1.0% 1.5% 1%
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Figure Captions  
 
Figure 1: 21-year moving window correlation between Thailand summer (Aug – Oct.) 
rainfall and selected predictors from pre-monsoon seasons (Jan-Mar NINO3; Mar – May 
IOD; Mar – May SAT; May – Jul SOI). The dashed horizontal lines are 95% significant 
levels. 
 
Figure 2: Correlation maps of Thailand summer rainfall and pre-monsoon season (a) Sea 
Level Pressures and, (b) Sea Surface Temperatures. Shaded regions are significant at 
95% confidence level. 
 
Figure 3: Same as Figure 1 but with the identified predictors for the pre-monsoon 
seasons, (a) Mar – May, (b) Apr – Jun and (c) May – Jul. 
 
Figure 4:  Cross-validated skill scores for Thailand summer rainfall forecasts issued on 
the 1st of each month from April through August using the three ensemble forecast 
methods. The skill measures - correlation, LLH and RPSS are shown in the three plots.  
 
Figure 5: Same as Figure 4 but for (a) wet years and (b) dry years. Correlation measure is 
not shown due to small sample size. 
 
Figure 6: PDF of ensemble forecasts (solid line) and the climatological PDF (dotted line) 
for three selected wet years, 1983, 1988 and 1995 from the three methods (a) Modified 
K-NN, (b) LOCFIT and (c) Linear Regression  
 
Figure 7: Same as Figure 6 but for selected dry years, 1984, 1987 and 1994. 
 

 

 

 

 

 

 

 

 

 



  

 
 

Figure 1 
 



  

 
 
 

Figure 2



  

 
 

Figure 3(a) 



  

 
 

Figure 3(b) 



  

 
 

Figure 3(c)  
 
 
 
 



  

 
Figure 4 



  

 
Figure 4 



  

 
 
 

Figure 5(a) 
 



  

 
 

Figure 5(b) 



  

 
Figure 6 



  

 
Figure 6



  

 
 

Figure 7 



  

 
 

Figure 7 
 
 
 
 
 
 
 
 
 
 
 

 


