Incorporating Large-Scale Climate Information in Water Resources Decision Making

Balaji Rajagopalan

Dept. of Civil, Env. And Arch.
Engg. And CIRES

Katrina Grantz, Edith Zagona
(CADSWES)

Martyn Clark (CIRES)

A Water Resources Management Perspective

Inter-decadal

m

e

H

0

Z

0

n

Decision Analysis: Risk + Values

- Facility Planning
 - Reservoir, Treatment Plant Size
- Policy + Regulatory Framework
 - Flood Frequency, Water Rights, 7Q10 flow
- Operational Analysis
 - Reservoir Operation, Flood/Drought Preparation
- Emergency Management
 - Flood Warning, Drought Response

Data: Historical, Paleo, Scale, Models

Climate

Hours

Weather

Motivation

- US Bureau of Reclamation (USBR) searching for an improved forecasting model for the Truckee and Carson Rivers (accurate and with long-lead time)
- Forecasts determine reservoir releases and diversions
- Protection of listed species

Lahontan Cutthroat Trout

Outline of Approach

Climate Diagnostics

Forecasting Model

Decision
Support System

Climate Diagnostics
 To identify relevant predictors to spring runoff in the basins

Forecasting Model

Nonparametric stochastic model conditioned on climate indices and snow water equivalent

Decision Support System
 Couple forecast with DSS to demonstrate utility of forecast

Data Used

- 1949-2003 monthly data sets:
 - Natural Streamflow (Farad & Ft. Churchill gaging stations)
 - Snow Water Equivalent (SWE)- basin average
 - Large-Scale Climate Variables

Winter Climate Correlations

Carson Spring Flow

500mb Geopotential Height

Sea Surface Temperature

Fall Climate Correlations

Carson Spring Flow

Sea Surface Temperature

Physical Mechanism

 Winds rotate counterclockwise around area of low pressure bringing warm, moist air to mountains in Western US

Climate Indices

- Use areas of highest correlation to develop indices to be used as predictors in the forecasting model
- Area averages of geopotential height and SST

500 mb Geopotential Height

Sea Surface Temperature

Outline of Approach

Climate Diagnostics

Forecasting Model

Decision Support System Climate Diagnostics

To identify relevant predictors to spring runoff in the basins

Forecasting Model

Nonparametric stochastic model conditioned on climate indices and SWE

Decision Support System
 Couple forecast with DSS to demonstrate utility of forecast

The Ensemble Forecast Problem

Ensemble Forecast/Stochastic
 Simulation /Scenarios generation – all of
 them are conditional probability density
 function problems

$$f(y_t|_{y_{t-1}, y_{t-2}, \dots, y_{t-p}}) = \frac{f(y_t, y_{t-1}, y_{t-2}, \dots, y_{t-p})}{\int f(y_t, y_{t-1}, y_{t-2}, \dots, y_{t-p}) dy_t}$$

- Estimate conditional PDF and simulate (Monte Carlo, or Bootstrap)
- K-NN Approach is Used

Model Validation & Skill Measure

- Cross-validation: drop one year from the model and forecast the "unknown" value
- Compare median of forecasted vs. observed (obtain "r" value)
- Rank Probability Skill Score

$$RPS(p,d) = \frac{1}{k-1} \left[\sum_{j=1}^{k} \left(\sum_{n=1}^{i} P_n - \sum_{n=1}^{i} d_n \right) \right] \qquad \text{RPSS} = 1 - \frac{\text{RPS(forecast)}}{\text{RPS(climatology)}}$$

Likelihood Skill Score

$$L = \left(\frac{\prod_{t=1}^{N} P_{j,i}}{\prod_{t=1}^{N} P_{c_{j,i}}}\right)^{\frac{1}{N}}$$

Forecasting Results

Outline of Approach

Climate Diagnostics

Forecasting Model

Decision
Support System

Climate Diagnostics
 To identify relevant predictors to spring runoff in the basins

Forecasting Model
 Nonparametric stochastic model
 conditioned on climate indices and SWE

Decision Support System Couple forecast with DSS to demonstrate utility of forecast

Seasonal Decision Support System

- Method to test the utility of the forecasts and the role they play in decision making
- Model implements major policies in lower basin (Newlands Project OCAP)
- Seasonal time step

Seasonal Model Policies

- Use Carson water first
- Max canal diversions: 164 kaf
- Storage targets on Lahontan Reservoir: 2/3 of historical April-July runoff volume
- No minimum fish flows (release from upstream reservoir to combat low flows)

Decision Model Flowchart

Decision Variables

 Lahontan Storage Available for Irrigation

 Truckee River Water Available for Fish

 Diversion through the Truckee Canal

Decision Model Results

Dec 1st Forecast

400

Feb 1st Forecast

100

20

Apr 1st Forecast

Dry Year: 1994

Wet Year: 1993

Normal Year: 2003

Exceedance Probabilities

1994 (Dry Year)	Apr 1st	Feb 1st	Dec 1st	Historical
Irrigation Water mean value (kaf)	94	161	214	264
264 kaf Irrigation Water exceedance probability	4%	14%	18%	50%
Fish Flow mean value (kaf)	0	42	39	199
60.5 kaf Fish Flow exceedance probability	0%	57%	58%	87%
Canal Diversion mean value (kaf)	52	107	121	84

1993 (Wet Year)	Apr 1st	Feb 1st	Dec 1st	Historical
Irrigation Water mean value (kaf)	291	332	246	264
264 kaf Irrigation Water exceedance probability	73%	73%	31%	50%
Fish Flow mean value (kaf)	452	391	138	199
60.5 kaf Fish Flow exceedance probability	100%	99%	81%	87%
Canal Diversion mean value (kaf)	8	29	101	84

2003 (Normal Year)	Apr 1st	Feb 1st	Dec 1st	Historical
Irrigation Water mean value (kaf)	261	268	225	264
264 kaf Irrigation Water exceedance probability	40%	49%	26%	50%
Fish Flow mean value (kaf)	76	223	71	199
60.5 kaf Fish Flow exceedance probability	61%	91%	69%	87%
Canal Diversion mean value (kaf)	126	106	108	84

Summary & Conclusions

- Climate indicators improve forecasts and offer longer lead time
- Water managers can utilize the improved forecasts in operations and seasonal planning

Grantz et al. (2005) – submitted to BAMS Grantz et al. (2005) – accepted in Water Resources Research.

Acknowledgements

Funding

- CIRES and the Innovative Research Project
- Tom Scott of USBR Lahontan Basin Area Office

