University of Colorado
Center for Science and Technology Policy Research

Collaboration in energy and materials sustainability

Alan J Hurd Los Alamos National Lab

October 2016

Welcome to the Anthropocene

 Human activity is now encoding information into the geologic record

- Boundary Markers:
 - Cretaceous-Paleogene:
 - Ir, Pt
 - Holocene-Antropocene:
 - C, Pu?

Oppenheimer

Manley

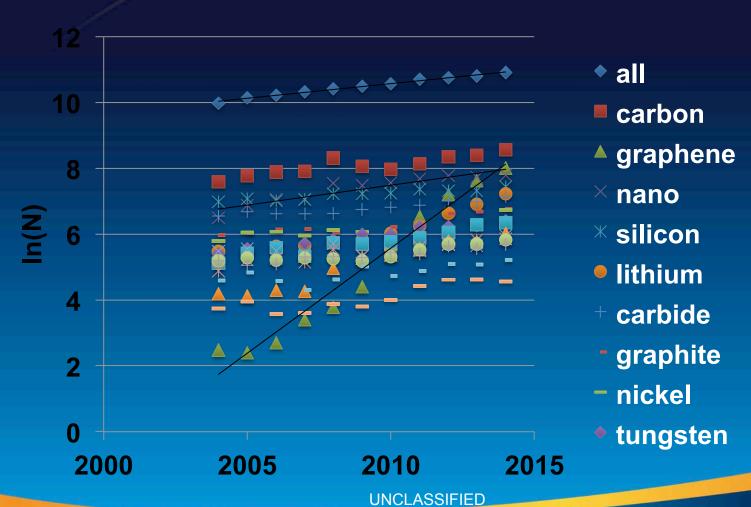
Bethe

Ulam

Bartlett

Smith

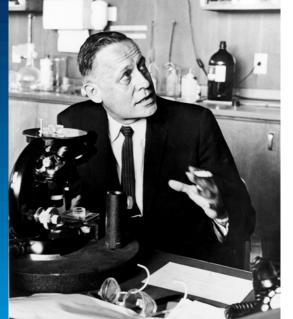
Wilson



Teller

The Human Resource

Research usage of elements in composites


Is this a "CO₂ moment" for materials research?

- Critical materials
- Al Bartlett's warning
- Elements in composites research
- Helium
- A sustainable solution for research

Climate Change (1950s)


Roger Revelle

GDP Growth Rates

What is a sustainable growth rate for a large economy?

Critical Elements & Materials

Necessary for current and emerging technologies including research and whose supply is at risk

Examples

- In solar cells, energy-efficient displays
- Te solar cells and detectors
- Pt catalysts
- Re superalloys

Energy Critical Elements:

								4.003
			5 B Boron	6 C Carbon	7 N Nitogen	8 Orygen	9 F Fleorine	Ne Neon
			10.811 Al Al Aluminum 26.981538	12.0107 1.4 Si Sison 28.0855	14.00674 15 P Phosphorus 30.973761	15,9994 16 5 3dfur 32,066	18.9984032	20.1797
28 Ni Nickel 8.6934	29 Cu Copper 63.546	30 Zn Zinc 45.39	Ga Gallium 69.723	Ge Germanium 72.61	33 As Americ 74,92160	Selenium 78.96		
Pd allodium	Ag Silver 107.8682	48 Cd Cadmium 112.411	In In In In	50 Sn Th 118,710	51 Sb Antimony 121.760	Te Tellurium 127.60		
Pt Platinum 95.078	79 Au Gold 196,96655	Hg Marcury 200.59	81 Ti Thollium 204.3833	82 Pb teod 207.2	83 Bi Biamuth 208,99038	Po Polonium (209)	85 At Astallae (210)	86 Rn ^{Radon} (222)
65 Tb	Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		

Securing Materials for Emerging Technologies

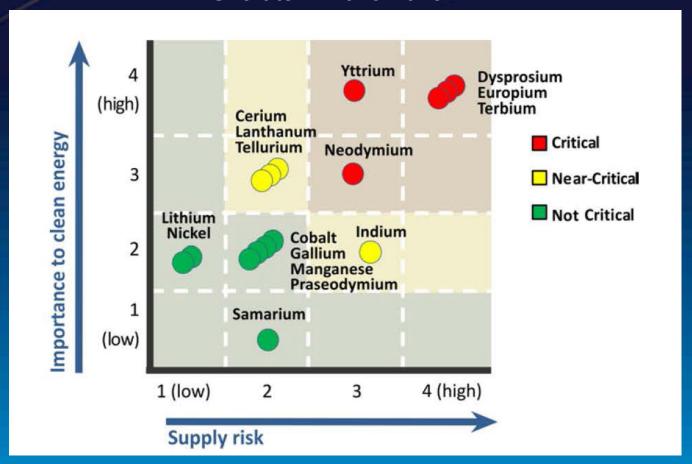
A REPORT BY THE APS PANEL ON PUBLIC AFFAIRS & THE MATERIALS RESEARCH SOCIETY

U.S. DEPARTMENT OF ENERGY

Critical Materials Strategy

December 2011

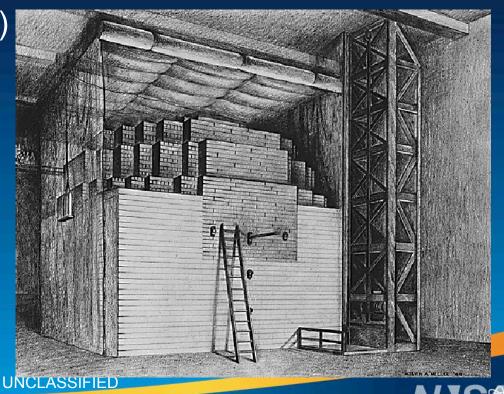
American Physical Society and the Materials Research Society
February 2011


US Department of Energy UNCLASSIFIED December 2011

US Department of Energy Criticality Assessment 2010-2015

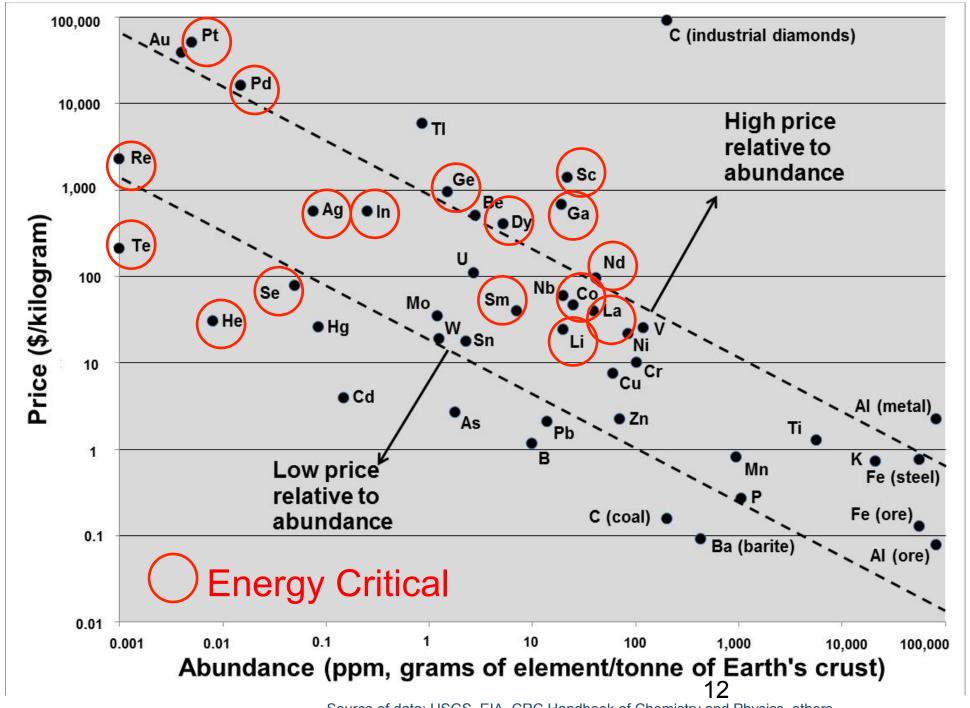
"Short term 2010-2015"

But doesn't research consume too little to worry...?

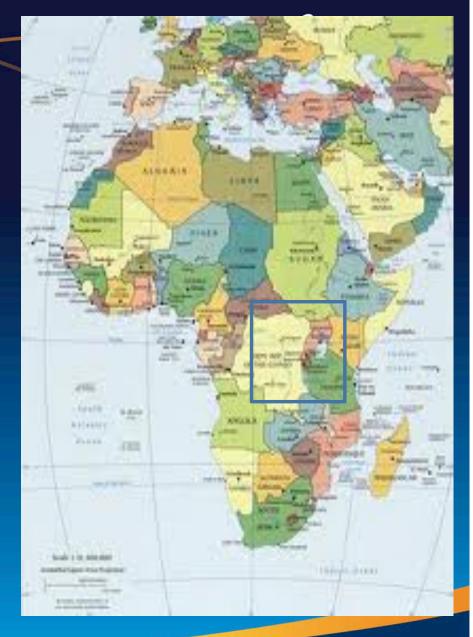


1942: Chicago Critical Elements would include...

- U (natural)
- ²H (D₂O)
- C (highly pure graphite)

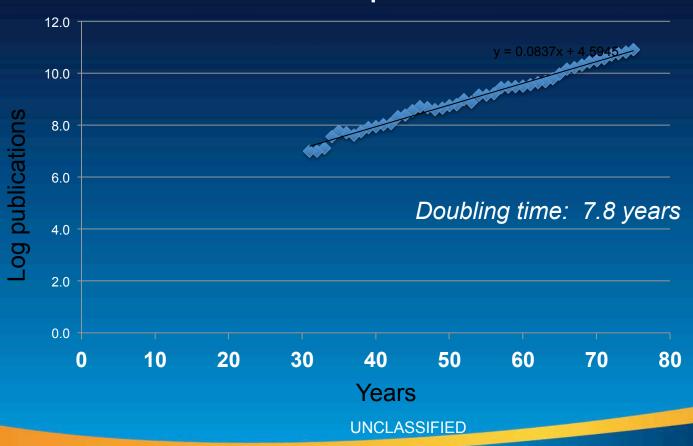


The APS-MRS set of Energy Critical Elements

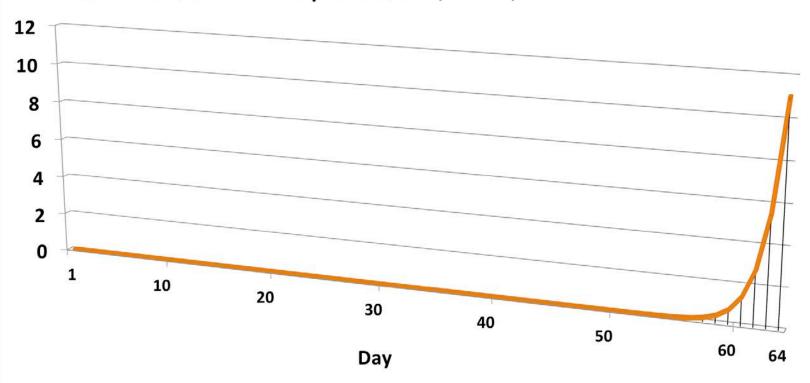

1 H Hydrogen			Platin	um Eleme	ents		Ot	her EC	Es								He Helum
3 Li Hittom 8.94	4 Be Reryliam 9.01	Rare Earth Elements					103889	otovolt Es	aic			5 B Raran 10,81	6 C Carbon 12.01	7 N Nicogen 14.01	8 O 099941 18.00	9 F Florine 19.00	10 Ne Nean 20.18
Na Bodum 22.99	12 Mg Magnesium 24,31											13 Al Alimrum 25.95	14 Si 81cm 28.09	15 P Phosphonia 30.97	16 S Suhir 32.07	17 CI Chlorine 35.45	Ar Argan 39.95
19 K Pothesium 39.10	20 Ca Caldies 40.08	Sc Scandian 44.98	22 Ti Therium 47.87	23 V Vansalum 50.94	Cr Chromium 52.00	25 Mn Vergenase 54.64	26 Fe Iron 55.85	27 Co Cobst 58.93	28 Ni Notel 58.69	29 Cu 03399 62.55	30 Zn 21 x 65 39	Ga Gallum 69.72	Ge Ge Remorium 72.61	AS Arsenic 74.92	34 Se Felanum 76.98	35 Br Rembe 79.90	G6 Kr Krymon 83.80
37 Rb Rubictum 85.47	3A Sr Stantum 87.62	39 Y Yttrum 68.91	40 Zr Ziporlum 91.22	Nb Nbohim 82.91	42 Mo 935530.m 95.04	43 TC Technetium (98)	Ru Hulhonum 101.07	A5 Rh Rhodum 102,91	Pd Petaetum 106.42	47 Ag 88901 107.87	48 Cd Codmium 112,41	49 In Indum 114.52	50 Sn Tr 11871	51 Sb Artimony 121.76	52 Te ≥1010= 127.50	53 lodina 126,30	54 Xe Xenon 131.29
CS Coslum 132.91	56 Ba Barum 137,33	57 La Lariharum 138.91	72 Hf Halnium 178 49	73 Ta Tario um 180.05	74 W Ringster 183.84	75 Re Hhavium 186.21	76 Os Osmum 190.23	77 r Hdum 107.22	78 Pt Platrum 195.08	79 Au 966 196.97	80 Hg Mercury 200.59	81 TI Thallum 204.38	82 Pb Leat 207.2	83 Bi Sismuth 205 98	Po Po Polonium (209)	85 At Astorine (210)	86 Rn Hadon (2/27)
87 Fr Prancium (228)	88 Ra Hadum (226)	89 AC Actrium (227)	104 Rf Maleston (261)	108 Db Duonum 12621	105 Sg Ecoordum (286)	107 Bh Sohrum (264)	108 HS Hassium (289)	109 Mt Molinotum (268)									

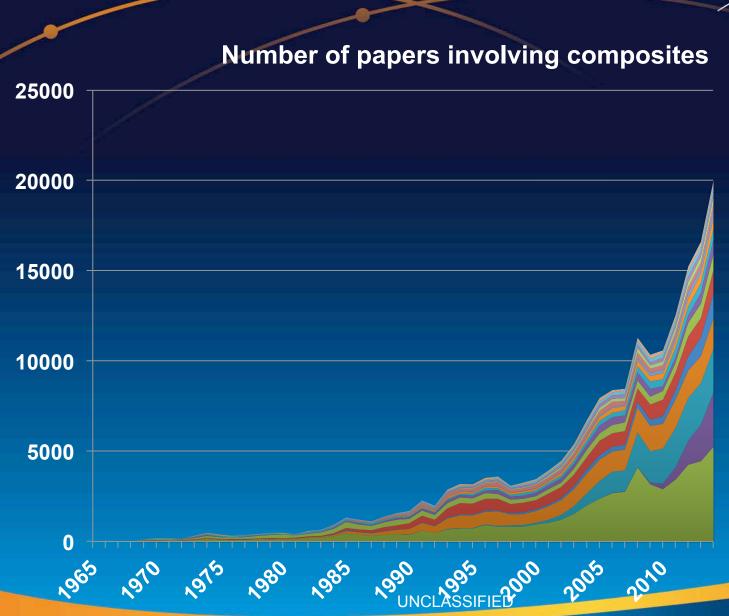
58 Cerum 140.12	59 Pr ************************************	60 Nd Mecoyntan 144.24	61 Pm Prometrum (145)	62 Sm 84markum 150.36	63 Eu Finglar 151.98	64 Gd Getainum 157.25	65 Tb Testsom 156.93	66 Dy Dyspraum 182.50	67 Ho Homiat 184.90	68 Er 64441 167.26	69 Tm Trutum 186.33	70 Yb Vitarbian 173.04	71 Lu tidatum 174.97
90 Th Tharium 232.04	91 Pa Potectrium 201.04	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Planarium (244)	95 Am Americum (249)	96 Cm Curium (247)	97 Bk Servetom (247)	98 Cf Callbrokum (251)	99 ES Finalestem (252)	100 Fm Fernum (257)	101 Md Windows in (258)	No Notelum (259)	103 Lr swrendium (262)

Conflict minerals


- Tin
- Tantalum
- Tungsten
- Gold

Exponential growth in composites research


All Composites



Rice as fraction of world production (annual)

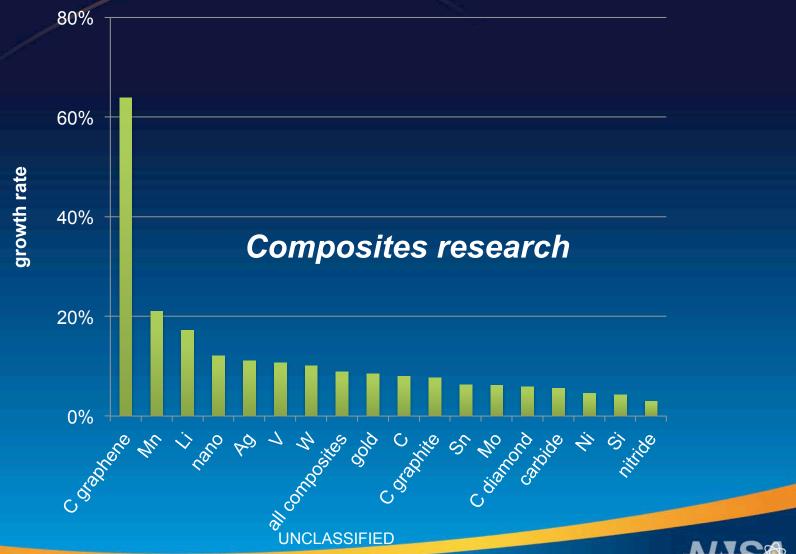
$y(t) = y_0 e^{rt}$

- vanadium
- molybdenum
- diamond
- tin
- gold
- nitride
- **■** manganese
- silver
- **■** tungsten
- nickel
- graphite
- carbide
- lithium
- silicon
- nano
- graphene
- carbon

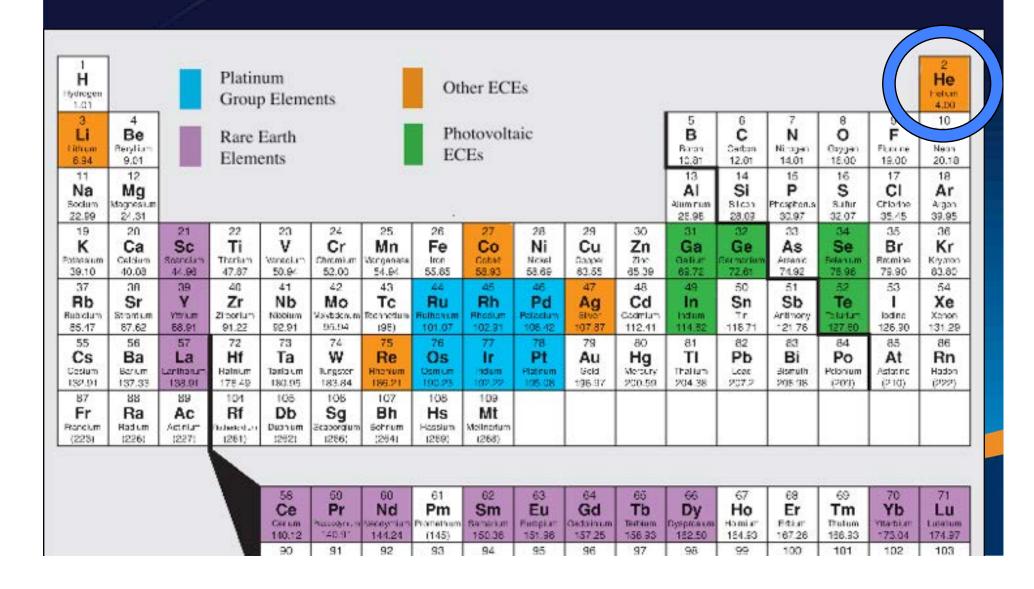
Faster, Sustainable and More Inclusive Growth

An Approach to the Twelfth Five Year Plan

Faster, Sustainable and More Inclusive Growth


An Approach to the Twelfth Five Year Plan

Government of India Planning Commission October, 2011



publication growth (%/yr)

The APS-MRS-ACS set of Energy Critical Los Alamos **Elements: Helium Case Study**

EST.1943

Helium:

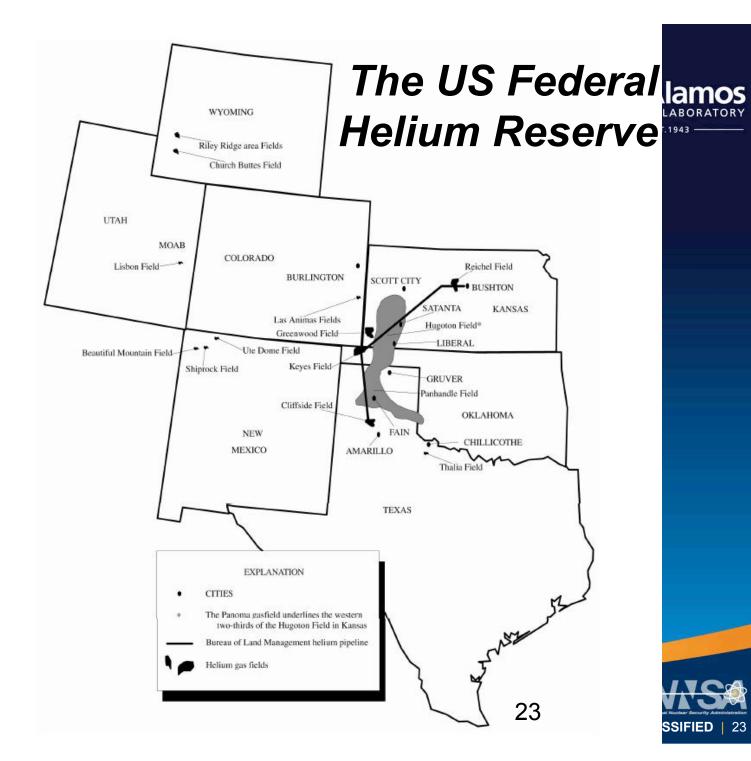
A New APS-MRS-ACS Critical Materials Study (2016)

- He-4 second only to H in universe
- Created in Earth by radioactive decay
- Collected from natural gas wells
 - Usually just released
- Stockpiled in Texas mines for:
 - Military dirigibles (1925 et seq)
 - Liquid-fueled rockets flush (1957 et seq)
 - Welding, semiconductor manufacture
 - Cryogenics
 - Particle accelerators
 - Medical MRI
 - Future nuclear reactor coolant
 - Condensed matter research
 - Quantum fluids physics

0.01%
99.99%

The Proton Neutron Electron

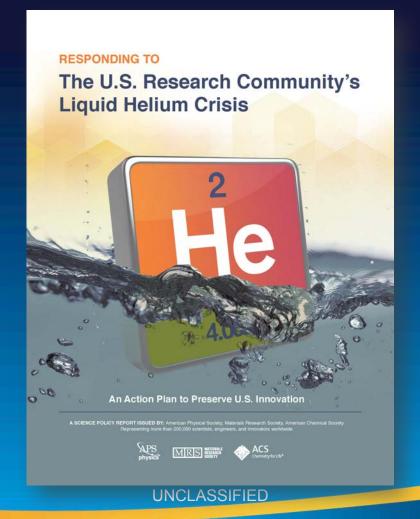
Natural Helium Isoto



Not gravitationally bound to Earth

Operated by Los Alamos National Security, LLC

Intermediate Policy Solutions



- In 1996, US Congress had determined to sell off the Federal Helium Reserve by 2020.
- Lawmakers woke up and passed the Helium Stewardship Act in 2013

APS Helium Study October 2016

APS-MRS-ACS He Panel

- Simon R. Bare, Co-Chair, SLAC National Accelerator Laboratory
- Michael Lilly, Co-Chair, Sandia National Lab
- Janie Chermak, University of New Mexico
- Rod Eggert, Colorado School of Mines
- William Halperin, Northwestern University
- Scott Hannahs, National High Magnetic Field Lab
- Sophia Hayes, Washington University in St. Louis
- Michael Hendrich, Carnegie Mellon University
- Alan Hurd, Los Alamos National Laboratory
- Mike Osofsky, Naval Research Laboratory
- Cathy Tway, The Dow Chemical Company

REPORT ADVISORS

Damon Dozier, Materials Research Society

Ryan Davison, American Chemical Society

APS STAFF

Francis Slakey, Associate Director of Public Affairs

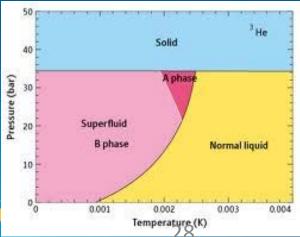
Mark Elsesser, Senior Policy Analyst

Jeanette Russo, OPA Programs Manager

Ronald Lipscomb, Science Policy Intern

He study recommendations

- 1. The White House (OSTP) and OMBtogether should develop guidance to federal agencies, which use or support the use of helium, on establishing plans to conserve helium without compromising their mission or the vitality of their research and development programs. The National Science Foundation's DMR to fund small-scale liquefiers for researchers...
- 2. Congress should mandate that a portion of the monies raised through the sales of crude helium from the Federal Helium Reserve be used to help finance the capital investment in equipment that reduces academic researchers' helium consumption. Executive Summary
- ✓ 3. The Bureau of Land Management (BLM) should clarify and then widely publicize its regulations regarding the in-kind helium program to explain that federal grantees are eligible for the program...
- ✓ 4. BLM should establish a royalty in-kind program for helium. A portion of the helium extracted from federal lands should be marked as in-kind and sold to vendors based on the current and established pricing methodology. Vendors would be required to refine and resell the helium to federal end-users.
- ✓ 5. The professional scientific societies should develop a methodology to help academic researchers determine if given helium costs, scientific requirements and existing infrastructure it is financially beneficial to make a capital investment in equipment to reduce their helium usage. The societies should facilitate contact between interested researchers worldwide and manufacturers of helium liquefiers and recyclers. "Matchmaking website"


He-3: A case study of colliding priorities

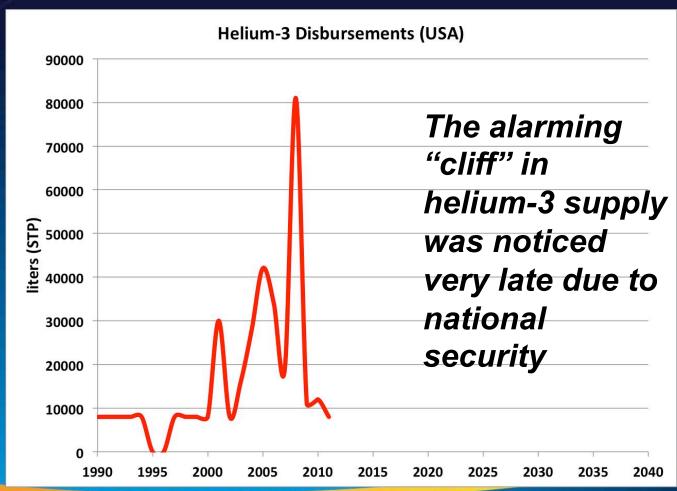
- Formed by decay of tritium
- Only one practical global source: the refurbishment and dismantlement of nuclear weapons (US and Russia)
- **Applications**
 - Cryogenics!
 - Quantum fluids research
 - Neutron detection
 - Medicine
 - Borehole logging for prospecting

Tritium is used in nuclear stockpiles

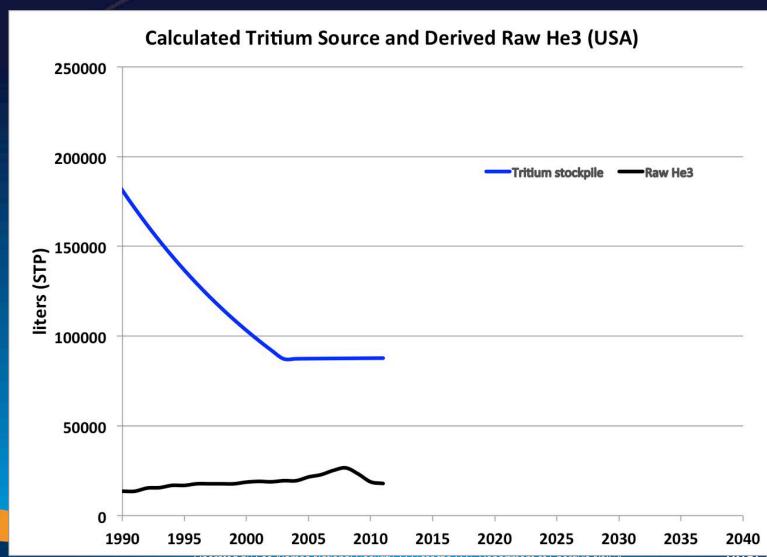
> Also used in exit signs, gun sights.

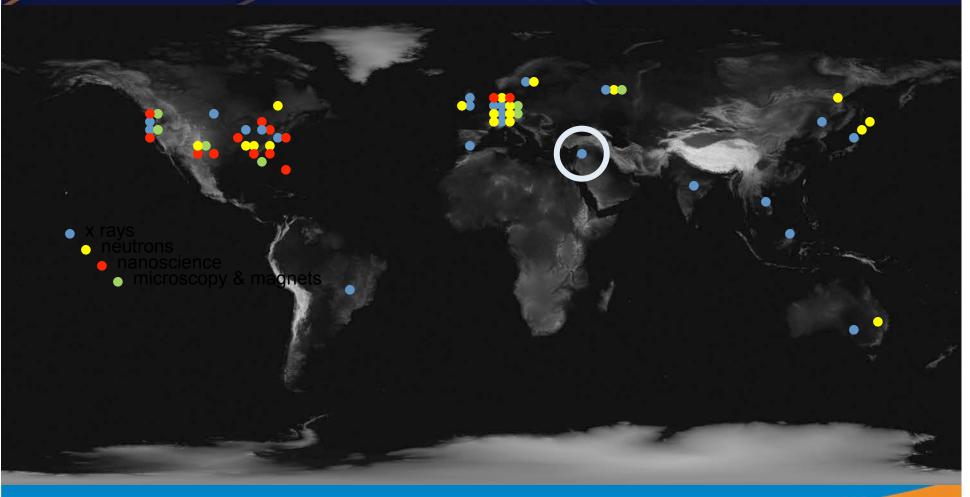
UNCLAS

Netron Detectors for the US Department of Homeland Security (DHS)...



- ordered He-3-based neutron detectors for deployment at shipping centers to detect nuclear materials
- over-subscribed the He-3 supply by squeezing out research needs
 - Neutron scattering facilities around the world starved for detectors
 - Crash programs created for alternative detectors based on B-10 and Li-6.


He-3 disbursements in US (from policy statements, usage)

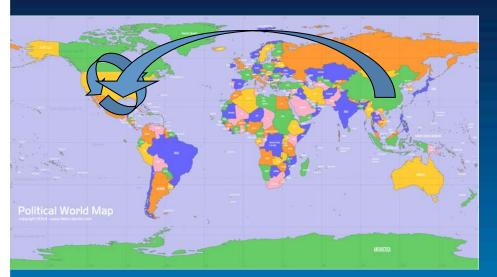

Assumed tritium mother reserve

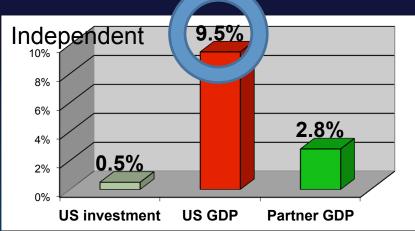
Low and High Demand He-3 Scenarios National Lab [Hurd and Kouzes, Eur Phys J 2014]

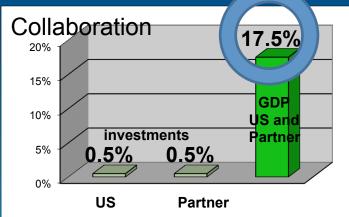
Materials Research A Network of International User Facilities

~\$35B in capital facilities....
only about half lare showns...

SESAME is a remarkable science diplomacy success

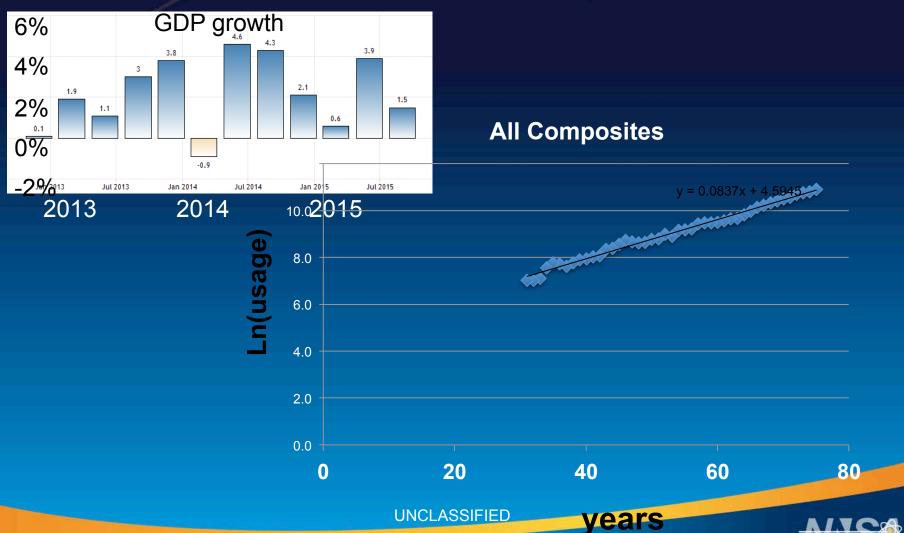





• Los Alamos NATIONAL LABORATORY

Collaboration "spillover" benefits

(Coe & Helpman 2007)



• Los Alamos NATIONAL LABORATORY EST. 1943

Can we beat the math?

Sustained Availability (A. Bartlett)

 $P = P(0) \exp(-kt)$

Supply TOTAL

- World petroleum will last 40 years at present rates of consumption, say
- Let k = 1/40 = 0.025
- Global use of petroleum declines
 2.5% per year
- The petroleum will last forever!
- Decay curve has a "half life" of 28 years.
- At every point on the decaying production curve, the life expectancy of the then remaining resource will be 40 years at the then current rate of production.

time

Obligations

