Addressing Climate Change as an 'Engineering Challenge'

Quantified Expertise in U.S. Geoengineering Politics

Julia Schubert

Forum Internationale Wissenschaft, Bonn

CSTPR Noontime Seminar February 22nd 2017

Structure

1. Introduction

2. The Analytical Framework

- a) Devising the Science-Politics Interface
- b) The Methodological Approach of "Following a Problem"

3. Data & Methods

- 4. Findings: Quantified Expertise in U.S. Geoengineering Politics (1990 2015)
 - a) The Problem Career
 - b) The Relevance of Quantified Expertise

5. Outlook

1. Introduction: Climate Engineering?

Climate Engineering is

"deliberate largescale intervention in the working of the Earth's natural climate system" 1

Solar Radiation Management & Carbon Dioxide Removal

→ Technological approach to addressing climate change

1. Introduction: Quantified Expertise?

Climate is

"the state, including a statistical description, of the climate system"2

→ Need of quantified expertise to observe climate change

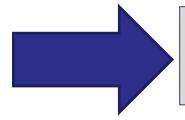
1. Introduction: Quantified Expertise?

Numerical Climatic Indicators

- ➤ Climatic Thresholds
- ➤ Numerical indicators of the climate (temperature, GHG in atmosphere etc.)

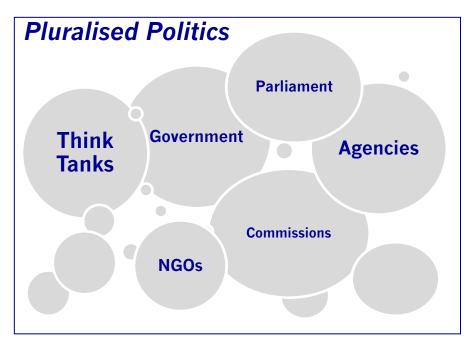
Climate Models

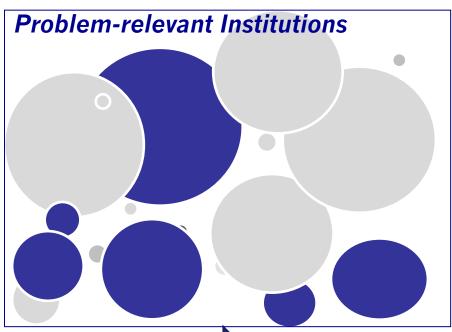
➤ Forecasting future states of the climate system


Geoengineering in U.S. Politics

- a) Devising the Science-Politics Interrelationship
 - ⇒ Sociological conceptions are moving away from the 'linear model':

Science informing policy


Complex reciprocal interrelationship


⇒ New focus on social construction and historical contingency of the science-politics interface

b) The Approach of 'Following a Problem'

'Following a Problem'

b) The Approach of 'Following a Problem'

A: Retrace Problem Career of Geoengineering in U.S. Politics

- → How is Geoengineering factually addressed as a problem?
- → How is this problem-framing shifting over time?

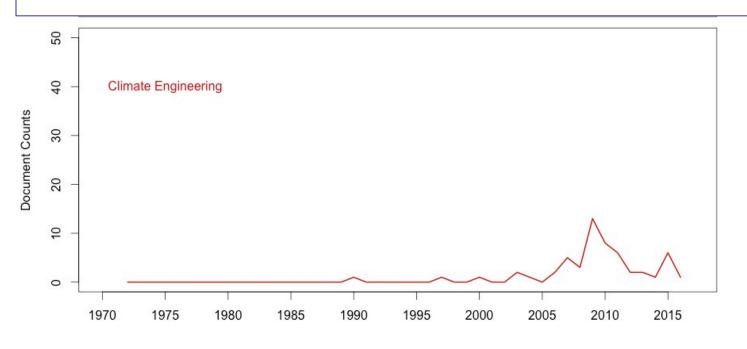


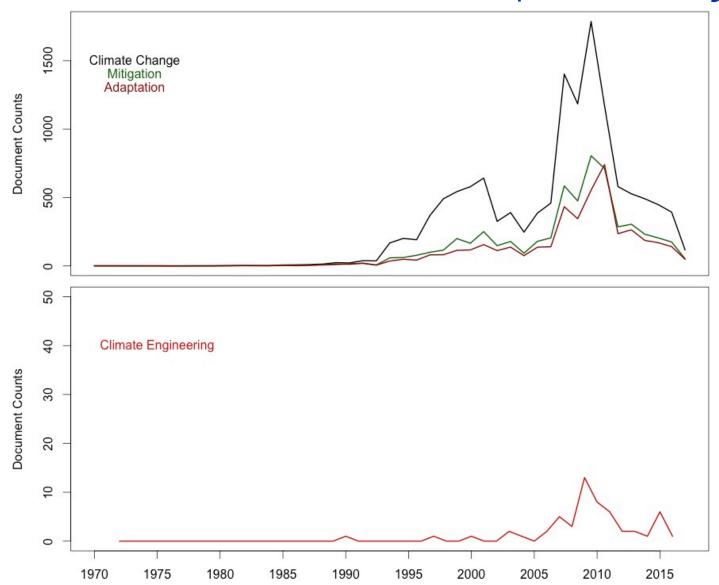
b) The Approach of 'Following a Problem'

A: Retrace Problem Career of Geoengineering in U.S. Politics

- → How is Geoengineering factually addressed as a problem?
- → How is this problem-framing shifting over time?

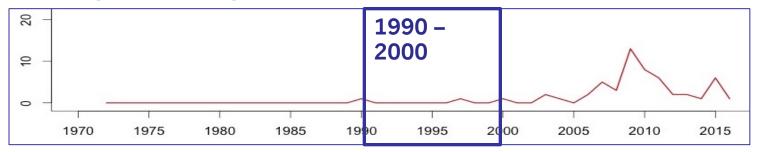
B: Establish Role of Quantified Expertise for Problem Career


→ How is quantified expertise aiding in shaping and addressing Geoengineering in the distinct frames?

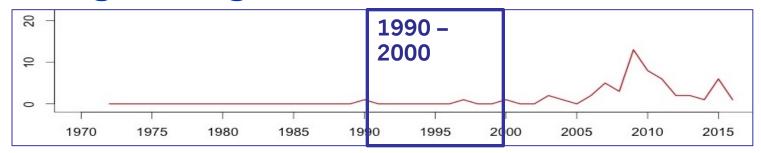

3. Data & Methods: The Corpus of Analysis

- → 50 Documents (Federal Digital System)
- → 1990 2015
- → 28 Hearings; 9 Reports; 6 Entries to the Federal Register (Rules, Notices); 4 Entries in the Congressional Record; 3 Pieces of Proposed Legislation

3. Data & Methods: The Corpus of Analysis

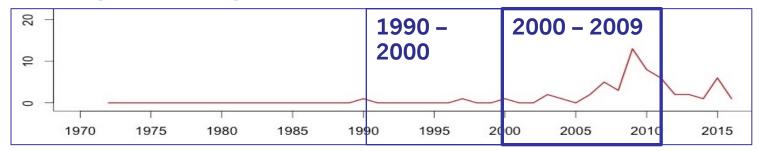


- 1) Scientific Challenge (14 Docs)
- 2) Engineering Challenge (17 Docs)
- 3) Science and Technology (S&T) Policy Challenge (8 Docs)
- 4) Environmental Adaption Challenge (4 Docs)
- 5) Regulatory Challenge (7 Docs)


"What's going on here? What are the scientists saying?"

(Chairman Chafee in: United States of America, 1997, p. 1f.)

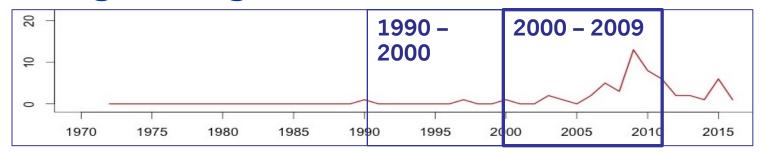
- Climate change as a scientific challenge
- Illustration and contestation of climate change as a physical phenomenon
- Discussion of 'the science' of climate change



Quantified Expertise?!

- → Quantifying physical parameters of climate change
- → Contesting measurability of climate change

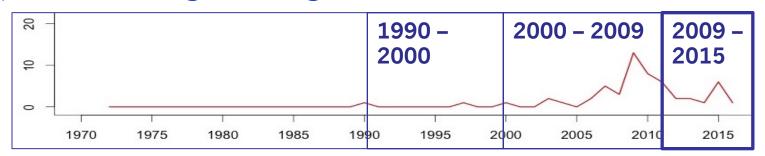
"Do we need a Manhattan Project for the Environment?"


(United States of America, 2006)

Relevance of Engineering and S&T Policy Frame

- Climate change as a 'daunting technological challenge
- National strategic dimension: Apollo, Manhattan Project
- Environmental frame emerges → communicating urgency

Quantified Expertise?!


- → Emergence of distinct 'numbers' (2 & 450): Threshold values signifying policy targets
- → Emergence of ecological "tipping points"
- → Quantifying "the size of the job"
- → From diffuse phenomenon to clear-cut challenge

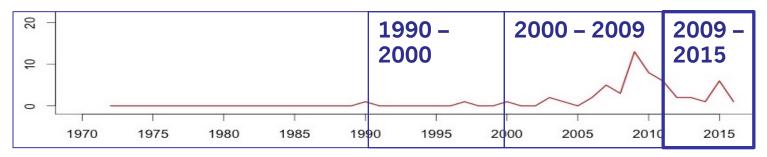
4. Findings

a) The Geoengineering Problem Career in U.S. Politics

"Geoengineering Parts I, II, and III"

(United States of America 2009)

Relevance of Engineering, Environmental, & Regulatory Frame


- Geoengineering as engineering (& scientific) challenge in its own right
- Geoengineering as necessary for environmental adaptation ("Last Resort" argument)
- Geoengineering regulated as "Non-Option"

4. Findings

a) The Geoengineering Problem Career in U.S. Politics

Quantified Expertise?!

- Quantifying and modeling the efficiency of potential Geoengineering strategies
- Quantifying urgent need for environmental resilience >
 Need for Geoengineering as 'Last Resort'
- Quantifying 'science-based' policy targets

5. Discussion of Results & Outlook

Quantified Expertise is substantially shaping Geoengineering problem career

5. Outlook

Quantified expertise is substantially shaping Geoengineering problem career

Numeric Indicators

- ✓ Illustrating & disputing physical reality of climate change
- ✓ Policy targets specify distinct challenge

Climate Models

- ✓ Organizing discussion of scientific understanding of climate change and Geoengineering
 - ✓ Climate change and Geoengineering as primarily scientific challenge

Literature

Keith, D. W. (2000). Geoengineering the Climate: History and Prospect. *Annual Review of Energy and the Environment*, 25(1), 245–284.

Pachauri, R. K., Mayer, L., & Intergovernmental Panel on Climate Change (Eds.). (2015). Climate Change 2014: Synthesis Report. Geneva, Switzerland: Intergovernmental Panel on Climate Change.

Royal Society (Great Britain). (2009). Geoengineering the Climate: Science, Governance and Uncertainty. London: The Royal Society.

