

Normalized Hurricane Damage in the United States: 1900-2005

Roger Pielke, J r., Christopher Landsea, and J oel Gratz

SPARC December Workshop
Boulder, CO
12 December 2005

Outline

OUTLINE

- Introduction - Background
- Methods
- Results
- A few words on data and additional questions
- Conclusions

Rapidly increasing losses

US Hurricane Damage 1900-2004

Can't be due to storm behavior alone

Accounting for societal change

U.S. Atlantic and Gulf Coastal Counties

Colorado
CTRES

Two snapshots in time

POPULATION BY COASTAL COUNTY

How things used to look

Miami Beach 1926

Source:
Wendler Collection

How they have changed

Miami Beach ~2000

Colorado
CIRES

Background

- Update of Pielke, Jr., R. A., and C. W.

Landsea, 1998: Normalized Hurricane Damages in the United States: 192595. Weather and Forecasting, 13:621631.

- New adjustment data
- Added 1996-2005
- Added 1900-1924
- To come
- Additional uncertainty analysis
- Relationship with climate indicies
- PDI
- ENSO
- MDO

Seftemer 1998

Normalized Hurricane Damages in the United States: 1925-95
Roger A. Pielke Jr

Emirormetalal and Societal Impacts Group National Center for Atmospheric Recearch. Bowlider Colorado
Christopher W. Landsea

Hurricane Research Dinition, No.AsA0M, Miami, Florida
(Maruscript received 5 September 1997, in fanal form 4 March 1998) ABSTRACT

 for by the intense huricanes
landiflinig topical cyloces.

1. Introduction: Why trends matter

In recent years, decision makers in govermment, in-
surance, and other sectors have demonstrated increasing
concem about hee concern about the actual and potential impacts of weather and climate on society. To a significant degree, con-
cem has been motivated by expectations that humancem has been motivated by expectations that human-
induced climate change will result in increasingly greatinduced chimate change will result in increasingly great-
er weather-related impacts
to society. Concern has also er weatre--elated impacts to society. Concern has also
been motivated by actual increases in weather-related impacts documented in recent years. Understanding
these impacts in terms of trends, causes, and projections these impacts in terms of trends, causes, and projections
has significance for a range of policy decisions related to disaster mitigation and the intermational negotiations
This paper focuses on trends in huricane impacts in
the United States because of the relatively well-docu-
the United States because of the relatively well-docu-

- 1998 American Meteorological Socier
mented information avaiable on trends in hurricane cli
matology, economic impacts, and societal factors unmatology, economic impacts, and societal factors un-
derlying those impacts. Recent increases in the impats of huricanes in the Uuitecestatates have focussed datpention
on them. In addition, the increased damages related to on them. In addition, the increased damages related to
hurricanes have been attributed to climate change by hurricanes have been attributed to clumate change by
the U.S. Senate, many in the insurance industy, and
Newsweek magazine, among many others dus enin Newsweek magazine, among many others (U.S.S.Senate
Biparisan Task Force on Funding Disaster Relief 1995, Bipartisan Task Force on Funding Disaster Relief 199w,
hereater BTFDR; Dulugolecki 19996 cover of News-
week, 21 January 1996). Recent research indicates the week, 21 January 1996). Recent research indicates that
this attrbution has been made incorrectly, leading to a conclusion that the factors responsible for docoumented
trends in hurricane impacts are widely misunderstoo (Lends in humicane impacts are widely misunderstood
(Landsea et al. 1996; Pielke 1997). The purpose of this
paper is to examine trends in huricane paper is to examine trends in hurricane impacts in the
United States in order to provide researchers and policy

(tandsisa 1993).

Methods

Normalized 2004 Damages $=f\left(L_{\mathrm{y}} * \mathrm{I}_{\mathrm{y}} * \mathrm{~W}_{\mathrm{y}} * \mathrm{P}_{\mathrm{y}, \mathrm{c}}\right)$

- $L_{y}=$ storm's loss in year y, in current dollars (i.e., not adjusted for inflation)
- $\left.\right|_{\mathrm{y}}=$ ratio of the 2004 implicit price deflator for GNP to that of year y,
- $\mathrm{W}_{\mathrm{y}}=$ ratio of the inflation-adjusted 2004 fixed reproducible tangible wealth to that of year y,
- $\quad P_{y, c}=$ ratio of the change in the population of the coastal county(ies) most affected by the storm from year y to 2004.

Data Sources

Normalized 2004 Damages $=f\left(L_{\mathrm{y}} * \mathrm{I}_{\mathrm{y}} * \mathrm{~W}_{\mathrm{y}} * \mathrm{P}_{\mathrm{y}, \mathrm{c}}\right)$

- L_{y} - U.S. National Hurricane Center, NOAA
- $\mathrm{I}_{\mathrm{y}}=$ Bureau of Economic Analysis, Dept. of Commerce
- $\mathrm{W}_{\mathrm{y}}=$ Bureau of Economic Analysis, Dept. of Commerce
- $P_{y, c}-$ U.S. 2000 Census

Meaningful data?

- Normalized data contains climate information
- ENSO (e.g., Katz 2002)
- Consistent with catastrophe model results
- Pielke et al. 2000
- Includes primarily wind damage, not floods
- Possibility of large underestimates pre-1950
- NHC collection procedures
- Federal hurricane relief
- Comprehensiveness of loss estimates

Preliminary Data

Hurricane Damages: Normalized to 2004 \$USD

Preliminary Data - Most Damaging Storms

\square	1.	1926	Great Miami	$\$ 129,700,000,000$
\square	2.	2005	Katrina	$\$ 80,000,000,000$
\square	3.	1900	Galveston	$\$ 53,100,000,000$
\square	4.	1992	Andrew	$\$ 50,800,000,000$
\square	5.	1915	Storm 2	$\$ 50,200,000,000$
-	6.	1938	New England	$\$ 35,000,000,000$
\square	7.	1944	Storm 9	$\$ 34,300,000,000$
\square	8.	1928	Lake Okeechobee	$\$ 29,600,000,000$
\square	9.	1965	Donna	$\$ 23,900,000,000$
\square	10.	1903	Storm 3	$\$ 20,700,000,000$

Preliminary Data - Most Damaging Years

■ 1. 1926 \$141,400,000,000
■ 2. 2005 \$100,000,000,000
■ 3. 1900 \$53,100,000,000
■ 4. $1992 \$ 52,500,000,000$

- 5. 1915 \$52,200,000,000

■ 6. 1944 \$45,900,000,000
■ 7. 2004 \$45,100,000,000
■ 8. 1938 \$35,000,000,000

- 9. 1954 \$32,700,000,000

■ 10. 1928 \$29,600,000,000

Preliminary Data - Most Damaging Decade 1935-2005

■ 1. 1935 \$193,300,000,000
■ 2. 2005 \$175,700,000,000
■ 3. 1947 \$125,500,000,000
■ 4. 1950 \$114,400,000,000
■ 5. 1951 \$112,600,000,000
■ 6. 1952 \$110,600,000,000
■ 7. 1949 \$107,700,000,000
■ 8. 1953 \$107,400,000,000

- 9. 1946 \$106,000,000,000

■ 10. 1955 \$103,000,000,000

Looking Ahead

What will future damages look like?

- Trend: doubling in real terms every 7-12 years
- If this trend continues by ~ 2020
- 1926 Great Miami $=\sim \$ 500$ billion
- 1992 Andrew $=\sim 200$ billion
- 2005 Katrina $=\sim 320$ billion
- Damages will continue to rise
- We may continue to underestimate loss potentials

How to provide feedback!

- Gratz@colorado.edu
- Pielke@colorado.edu

■ http://sciencepolicy.colorado.edu/prometheus

Thanks!

