Simple Regression

CHAPTER OBJECTIVES

After reading this chapter, you should be able to

* Use simple regression to test the statistical significance of a bivariate
relationship involving one dependent and one independent variable
Use Pearson’s correlation coefficient as a measure of association
between two continuous variables '
* Interpret statistics associated with regression analysis
*+ Write up the model of simple regression
* Assess assumptions of simple regression

This chapter completes our discussion of statistical techniques for
studying relationships between two variables by focusing on those that are
continuous. Several approaches are examined: simple regressioh; the Pear-
som’s correlation coefficient; and a nonparametric alterative, Spearman’s
rank correlation coefficient. o

‘ Although all three techniques can be used, we focus particularly on
simple regression. Regression allows us to predict outcomes based on
knowledge of an independent variable. It is also the foundation of time

Simple Regression 799

series analysis, which is useful for budgeting and planning, and it is the
essential foundation for studying relationships among three or more vari-
ables. Such relationships are examined in subsequent chapters and include
control variables, which were introduced in Chapter 9. We begin with simple
regression. i

SIMPLE REGRESSION

Simple regression is used to analyzé the relationship between two continu-
ous variables. For example, we might study the relationship between produc-
tivity and job satisfaction when both variables are measured on a continuous -
scale. Continuous variables assume that the distances between ordered cate-
gories are determinable.! In simple regression, one variable is defined as the
dependent variable and the other as the independent variable.

Scatterplot

The relationship between two continuous variables can be portrayed in a
scatterplot. A scatterplot is merely a plot of the data points for two continu-
ous variables, as shown i Figure 12.1 (without the straight line). By conven-
tion, the dependent variable is shown on the vertical {or Y-) axis, and the
independent variable on the horizontal (or X-) axis. The relationship
between the two variables is estimated as a straight line relationship. The
line is defined by the equation y = a + bX, where a is the intercept (or
constant), and b is the slope. The slope, b, is defined as Ay/Ax, or oy, -y
(x, —x,). The line is mathematically calculated such that the sum of
distances from each observation to the line is minimized.? By definition,
the slope indicates the change in y as a result of a unit change in x. The
straight line is also called the regression line, and the slope (b) is called the
regression coefficient.

A positive regression coefficient indicates a positive relationship between
the variables, shown by the upward slope in Figure 12.1. A negative regres-
sion coefficient indicates a negative relationship between the variables and is
indicated by a downward-sloping line.

Test of Significance .

The test of significance of the regression coefficient is a key test of hypothe-
sis regression analysis that tells us whether the slope (b) is statistically differ-
ent from zero, The slope is calculated from a sample, and we wish to know
whether it is significant. When the regression line is horizontat (b = 0),

no relationship exists between the two variables. Then, changes in the
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Figure 12.1 ———— Scatterplot
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_ independent variable have no effect on the dependent variable. The follow-
ing hypotheses are thus stated:

Hg: b= 0, or the two variables are unrelated.
H,: & # 0, or the two variables are (positively or negatively) related.

To determine whether the slope equals zero, a t-test is performed. The test
statistic is defined as the slope, b, divided by the standard error of the slope,
se(b). The standard error of the slope is a measure of the distribution of the
observations around the regression slope, which is based on the standard

- deviation of those observations to the regression line:

b .
se(b)

Thus, a regression line with a small slope is more likely to be statistically
significant when observations lie closely around it (that is, the standard error
of the observations around the line is also small, resulting in a larger test
statistic). By contrast, the same regression line might be statistically insignifi-
cant when observations are scattered widely around it. Observations that lie
farther from the regression line will have larger standard deviations, and
hence larger standard errors. The computer calculates the slope, intercept, stan-
dard ervor of the slope, and the level at which the slope is statistically significant,
Consider the following example. A management analyst with the
Department of Defense wishes to evaluate the impact of teamwork on the
productivity of naval sliipyard repair facilities. Although all shipyards are
required to use teamwork management strategies, these strategies are
assumed to vary in practice. Coincidentally, a recently implemented -
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Table 12.1 ———*+— Simple Regression Qutput
Model Fit

0.272 0.074 0.825

Dependent variable: Productivity

Constant 4026 "18.894 0.000
Teamwork 0.223 5.053 0.000

Note: SEE = standard error of the estimate; SE = standard error; Sig. = significance. .

employee survey asked about the perceived use and effectiveness of team-
work. These items have been aggregated into a single index variable that
measures teamwork. Employees were also asked questions about perceived
performance, as measured by productivity, customer orientation, planning
and scheduling, and employee motivation, These items were combined into
an index measure of work productivity. Both index measures are continuous
variables. The analyst wants to know whether a relationship exists between
perceived productivity and teamwork. Table 12.1 shows the computer output
obtained from a simple regression. The slope, b, is 0.223; the slope coeffi-
cient of teamwork is positive; and the slope is significant at the 1 percent
level. Thus, perceptions of teamwork are positively associated with produc-
tivity. The t-test statistic, 5.053, is calculated as 0.223/0.044 (rounding errors
explain the difference from the printed value of #). Other statistics shown in
Table 12.1 are discussed below. The appropriate notation for this relation-
ship is shown below. Either the t-test statistic or the standard error should
be shown in parentheses, directly below the regression coefficient; analysts
should state which statistic is shown. Here, we show the t-test statistic:?

PRODUCTIVITY = 4.026 + 0.223**TEAMWORK
(5.05)

oy < 01 % p < .05

The level of significance of the regression coefficient is indicated with aster-
isks, which conforms to the p-value legend that should also be shown. Typi-
cally, two asterisks are used to indicate a 1 percent level of significance, one
asterisk for a 5 percent level of significance, and no asterisk for coefficients
that are insignificant.
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Table 12.1 also shows R-square (R?), which is called the coefficient of
determination. R-square is of great interest: its value is interpreted as the
percentage of variation in the dependent variable that is explained by the inde-
pendent variable, R-sqiiare varies from zero to one, and is called a goodnéss- -
of-fit measure. In our example, teamwork explains only 7.4 percent of the
‘variation in productivity. Although teamwork is significantly associated with
productivity, it is quite likely that other factors also affect it. It is conceivable
that other factors might be more strongly associated with productivity and
that, when controlled for other factors, teamwork is no longer significant.
Typically, values of R? below 0.20 are considered to indicate weak relation-
ships, those between 0.20 and 0.40 indicate moderate relationships, and
those above 0.40 indicate strong relationships. Values of R? above 0.65 are
considered to indicate very strong relationships. R is called the multiple
correlation coefficient and is always 0 = R= 1.

To summarize up to this point, simple regression provides three criti-
cally important pieces of information about bivariate relationships involving
two continuous variables: (1) the level of significance at which two variables
are associated, if at all (¢#-statistic), (2) whether the relationship between the
two variables is positive or negative (b), and (3) the strength of the relation-
ship (R?).

The primary purpose of regression analysis is hypothesis testing, not
prediction. In our example, the regression model is used to test the hypothe-
sis that teamwork is related to productivity. However, if the analyst wants to
predict the variable “productivity;,” the regression output also shows the SEE,

" or the standard error of the estimate (see Table 12.1). This is a measure of
the spread of y values around the regression line as calculated for the mean
value of the independent variable, only, and assuming a large sample. The
standard error of the estimate has an interpretation in terms of the normal
curve, that is, 68 percent of y values lie within one standard error from the
calculated value of 3, as calculated for the mean value of x using the preced-
ing regression model. Thus, if the mean index value of the variable “team-
work” is 5.0, then the calculated (or predicted) value of “productivity” is
[4.026 + 0.223%5 =] 5.141. Because SEE = 0.825, it follows that 68 percent of

_productivity values will lie 0.825 from 5.141 when “teamwork” = 5. Predic-
tions of y for other values of x have larger standard errors.®

Assumptions and Notation _

Simple regression assumes that the relationship between two variables is
linear. The linearity of bivariate relationships is easily determined through
visual inspection, as shown in Figure 12.2. In fact, all analysis of relation-

* ships involving continuous variables should begin with a scatterplot. When -
variable relationships are nonlinear (parabolic or otherwise heavily curved),
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it is not appropriaté to use linear regression. Then, one or both variables
must be transformed, as discussed in Chapter 11.

Simple regression also assutnes that the linear relationship is constant
over the range of observations. This assumption is violated when the rela-
tionship is “broken,” for example, by having an upward slope for the first half
of independent variable values and a downward slope over the remaining
values. Then, analysts should consider using two regression models each for
these different, linear relationships. The linearity assumption is also violated
when no relationship is present in part of the independent variable values.
This is particularly problematic because regression analysis will calculate a
regression slope based on all observations. In this case, analysts may be
misled into believing that the linear pattern holds for all observations. Hence,
regression results always should be verified through visual inspection.

‘Linear regression also assumes that the variables are continuous. In
Chapter 13, we will see that regression can also be used for nominal and
dichotomous independent variables. The dependent variable, however, must
be continuous. When the dependent variable is dichotomous, logistic regres-
sion should be used (Chapter 14}.

Finally, the following notations are commouly used in regression analy-
sis. The predicted value of y (defined, based on the regression model, as y =
a + bX) is typically different from the observed value of y. The predicted
value of the dependent variabley is sometimes indicated as y (pronounced
“y-hat”). Only when R? = 1 are the observed and predicted values identical
for each observation. The difference between y and ¥ is called the regression

error or error term (). Hence the expressions

y=a+b* and
y=at+tb'x +e

are equivalent, as is y = y + ¢. Certain assumptions about e are important,
such as that it is normally distributed. When error term assumptions are
violated, incorrect conclusions may be made about -
the statistical significance of relationships. This
important issue is discussed in greater detail in
Chapter 13 and, for time series data, in Chapter 15.
Hence, the above is a pertinent, but incomplete list
of assumptions. ’

PEARSON’S CORRELATION COEFFICIENT

Pearsor’s correlation coefficient, r, measures the association (significance,
direction, and strength) between two continuous variables; it is a measure of
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Figure 12.2 — -~ —Three Examples of r

r ==1.00

association for two continuous variables. Also called the Pearson’s product-
moment correlation coefficient, it does not assume a causal relationship, as
does simple regression. The correlation coefficient, r, indicates the extent to
which the observations lie closely or loosely clustered around the regression
line. The coefficient r ranges from —1 to +1. The sign indicates the direction
of the relationship, which, in simple regression, is always the same as the slope
coefficient. A “—1” indicates a perfect negative relationship, that is, that all

 observations lie exactly on a downward-sloping regression line; a “+17 indi-
cates a perfect positive relationship, whereby all observations lie exactly on an
upward-sloping regression line, Of course, such values are rarely obtained in
practice because observations seldom lie exactly on a line. An rvalue of zeré
indicates that observations are so widely scattered that it is impossible to draw
any well-fitting line. Figure 12.2 illustrates some values of 7.

It is important to avoid confusion between Pearson’s correlation coeffi-
cient and the ccefficient of determination. For the two-variable, simple
regression model, r? = R2, but whereas 0 = R = 1, r ranges from ~1 to +1,
Hence, the sign of rtells us whether a relationship is positive or negative, but
the sign of R, in regression output tables such as Table 12.1, is always posi-
tive and cannot inform us about the direction of the relationship. In simple
regression, only the regression slope, b, informs us about the direction of the
relationship. Statistical software programs usually show r rather than r2.
Note also that the Pearson’s correlation coefficient can be used only to assess
the association between two continuous variables, whereas regression can be
extended to deal with more than two variables, as discussed in Chapter 13.
Pearson’s correlation coefficient assurnes that both variables are normally
distributed.

When Pearson’s correlation coefficients are calculated, a standard error
of r can be determined, which then allows us to test the statistical signifi-
cance of the bivariate correlation. For bivariate relationships, this is the same
level of significance as shown for the slope of the regression coefficient. For
the variables given earlier in this chapter, the value of ris .272 and the statis-
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tical significance of ris p = .01. Use of the Pearson’s correlation coefficient
ssumes that the variables are normally distributed and that there are no

significant departures from linearity.”

Comparing the measures r and b (the slope) sometimes causes confu-
sion. The key point is that r does not indicate the regression slope but rather
the extent to which dbservations lie close to it. A steep regression line (large
b) can have observations scattered loosely or closely around it, as can a shal-
low (more horizontal) regression line. The purposes of these two statistics
are very different - -

SPEARMAN'S RAN-K CORRELATION COEFFICIENT

The nonparametric idlternative, Spearman’s rank correlation coefficient (p,
or “rtho™), looks at ¢orrelation among the ranks of the data rather than
among the values. The ranks of data are determined as shown in Table 12.2
{adapted from Table 10.8):

Table 12.2 ————+¥— Ranks of Two Variables

1 2.5 2 3.4 3
2 29 3 3.3 2
3 40 5 4.0 5
4 - 3.2 4 3.9 4
5 1.2 1 2.1 1

Because Spearman’s rank correlation coefficient examines correlation among
the ranks of variables, it can also be used with ordinal-level data.? For the
data in Table 12.2, Spearman’s rank correlation coefficient is .900 (p =
.035).10 Spearman’s p-squared coefficient has a “percent variation explained”
interpretation, similar to the measures described earlier. Hence, 90 percent of
the variation in one variable can be explamed by the other. For the variables
given earlier, the Spearman’s rank correlation coefficient is .274 (p < .01),
which is comparable to rreported in preceding sections.

Box 12.1 illustrates another use of the statistics described in this chap-
ter, in a study of the relationship between crime and poverty.

SUMMARY

When analysts examine relationships between two continuous variables,
they can use simple regression or the Pearson’s correlation coefficient. Both
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measures show (1) the statistical significance of the relationship, (2) the
direction of the relationship (that is, whether it is positive or negative), and
(3) the strength of the relationship.

Simple regression assumes a causal and linear relationship between the
continuous variables. The statistical significance and direction of the slope
coefficient is used to assess the statistical significance and direction of the
relationship. The coefficient of determination, RZ2, is used to assess the
strength of relationships; R? is mterpreted as the percent variation
explained. Regression is a foundation for studying relationships involving
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three or more variables, such as control variables. The Pearson’s correlation

coefficient does not assume causality between two continuous variables.

A nonparametric alternative to testing the relationship between two

_continuous variables is Spearman’s rank correlation coefficient, which exam-
ines correlation among the ranks of the data rather than among the values
themselves. As such, this measure can also be used to study relationships in
which one or both variables are ordinal.

" KEY TERMS

Coefficient of determination, R?
{p. 202)

Error term (p. 203)

Observed value of y (p. 203)

Pearson’s correlation coefficient
(p. 203)

Predicted value of the dependent
variable ¥, ¥ (p. 203)

Regression line (p. 199)

Scatterplot (p. 199)

Spearman’s rank correlation
coefficient (p. 205)

Standard error of the estimate
(p. 202)

Test of significance of the regression
coefficient (p. 199)

Regression coefficient (p. 199)

Notes

1.

See Chapter 3 for a definition of continuous variables. Although the
distinction between ordinal and continuous is theoretical (namely,
whether or not the distance between categories can be measured), in
practice ordinal-level variables with seven or more categories (including
Likert variables) are sometimes analyzed using statistics appropriate for
interval-level variables. This practice has many critics because it violates
an assumption of regression (interval data), but it is often done because

" it doesn’t (much) affect the robustness of results.

. The method of calculating the regression coefficient (the slope) is ca]led,

ordinary least squares, or OLS. This method estimates the slope by mini-
mizing the sum of squared differences between each predicted value of
a+ bX and the actual value of ¥. One reason for squaring these
distances is to ensure that all distances are positive.

. No consistent preference exists about what is shown in parentheses. The

current practice in many political science journals is to report the stan-
dard error, but many public administrations report the t-test.

Some authors also identify other levels of significance, such as p < .001
or p < .10, but this does not affect study conclusions, of course.

5.

6.
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The formula for R? is presented in Chapter 13, in our discussion of the
F-test.

For predictions not based on the mean of x, the standard error of y is
Jarger than the SEE; according to the following formula:

SEE’ = SEE_ 1 +— +M—)_
N (N- l)s

where 52 is the variance of x, that is, Z(x — x)2/(N — 1). As can be seen,
SEE’ = SEE only when N is large and the predicted values of y are calcu-
lated for the mean value of x (that is, x; = x). Graphically, the relation-
ship between SEE’ and x is as follows:

SEE”
SEE

x|

. Based on visual inspection, these two variables are normally distributed.

In addition, the Kolmogorov-Smirnov test (see Chapter 11) for the vari-
able “teamwork” shows p = .084.

. Pearson’s correlation coefficient is also the basis for calculating Cron-

bach alpha, the measure of internal reliability discussed in Chapter 3.
Thie formula for alpha is a = N*7/[1 + (N—1)*7)], where N = the
number of variables and ¥ is the mean of the correlations among all of
the different pairs of variables that make up the measure. This formula
clearly shows that alpha is bounded by zero and one: when 7 = 1, then
a=1and when7 =0, thena=0.

. Spearman’s rank correlation coefficient would also be used when

assumptions of norma]ity are violated, or when variables are related im
nonlinear ways.

10. The formula for Spearman’s rank correlatlon coefficient is as follows:

_q_ 824" 62::12
n(n® —1)
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where d is the difference between ranks in each observation {(x,y). For
the data shown in Table 12.2, consider the following calculation:

1 2 3 -1
2 3 2 1
3 5 5 0
2 1 1 0

S S

Hence, the value of r, = 1 — [(6*2)/5(25 — 1)] =.0.9.

Multiple Regression

CHAPTER OBJECTIVES

After reading this chapter, you should be able to
+ Understand multiple regression as a full model specification technique

« Interpret standardized and unstandardized regression coefficients of
multiple regression’

+ Know how to use nominal variables in regression as dummy variables

» Explain the importance of the error term plot 7

« Identify assumptions of regression, and know how to test and correct
assumption violations )

Multiple regression is one of the most widely used multivariate statisti-
cal techniques for analyzing three or more variables. This chapter uses multi-
ple regression to examine such relationships, and thereby extends the discus-
sion in Chapter 12. The popularity of multiple regression is due largely to
the ease with which it takes control variables (or rival hypotheses) into
account. In Chapter 9, we discussed briefly how contingency tables can be
used for this purpose, but doing so is often a cumbersome and sometimes
inconclusive effort. By contrast, multiple regression easily incorporates




